Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria

C.E. Griguer, C.R. Oliva, G.Y. Gillespie, Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J. Neurooncol. (2005). https://doi.org/10.1007/s11060-004-6404-6

Article  PubMed  Google Scholar 

M. Harel, R. Ortenberg, S.K. Varanasi, K.C. Mangalhara, M. Mardamshina, E. Markovits, E.N. Baruch, V. Tripple, M. Arama-Chayoth, E. Greenberg, A. Shenoy, R. Ayasun, N. Knafo, S. Xu, L. Anafi, G. Yanovich-Arad, G.D. Barnabas, S. Ashkenazi, M.J. Besser, J. Schachter, M. Bosenberg, G.S. Shadel, I. Barshack, S.M. Kaech, G. Markel, T. Geiger, Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell (2019). https://doi.org/10.1016/j.cell.2019.08.012

H.O. Yazdani, E. Roy, A.J. Comerci, D.J. van der Windt, H. Zhang, H. Huang, P. Loughran, S. Shiva, D.A. Geller, D.L. Bartlett, A. Tsung, T. Sheng, R.L. Simmons, S. Tohme, Neutrophil Extracellular traps Drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. (2019). https://doi.org/10.1158/0008-5472.Can-19-0800

Article  PubMed  PubMed Central  Google Scholar 

G.Y. Liou, H. Döppler, K.E. DelGiorno, L. Zhang, M. Leitges, H.C. Crawford, M.P. Murphy, P. Storz, Mutant KRas-Induced mitochondrial oxidative stress in Acinar cells Upregulates EGFR Signaling to drive formation of pancreatic precancerous lesions. Cell. Rep. (2016). https://doi.org/10.1016/j.celrep.2016.02.029

Article  PubMed  PubMed Central  Google Scholar 

S.S. Sabharwal, P.T. Schumacker, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer. (2014). https://doi.org/10.1038/nrc3803

Article  PubMed  PubMed Central  Google Scholar 

M. Tigano, D.C. Vargas, S. Tremblay-Belzile, Y. Fu, A. Sfeir, Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature. (2021). https://doi.org/10.1038/s41586-021-03269-w

Article  PubMed  PubMed Central  Google Scholar 

R. Pan, J. Ryan, D. Pan, K.W. Wucherpfennig, A. Letai, Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell. (2022). https://doi.org/10.1016/j.cell.2022.03.030

Article  PubMed  PubMed Central  Google Scholar 

A.N. Cheng, L.C. Cheng, C.L. Kuo, Y.K. Lo, H.Y. Chou, C.H. Chen, Y.H. Wang, T.H. Chuang, S.J. Cheng, A.Y. Lee, Mitochondrial lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles. J. Immunother Cancer. (2020). https://doi.org/10.1136/jitc-2020-001372

Article  PubMed  PubMed Central  Google Scholar 

C.H. Tsai, Y.M. Chuang, X. Li, Y.R. Yu, S.F. Tzeng, S.T. Teoh, K.E. Lindblad, M. Di Matteo, W.C. Cheng, P.C. Hsueh, K.C. Kao, H. Imrichova, L. Duan, H. Gallart-Ayala, P.W. Hsiao, M. Mazzone, J. Ivanesevic, X. Liu, K.E. de Visser, A. Lujambio, S.Y. Lunt, S.M. Kaech, P.C. Ho, Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell. Metab. (2023). https://doi.org/10.1016/j.cmet.2022.12.003

Article  PubMed  PubMed Central  Google Scholar 

R. El-Amine, D. Germini, V.V. Zakharova, T. Tsfasman, E.V. Sheval, R.A.N. Louzada, C. Dupuy, C. Bilhou-Nabera, A. Hamade, F. Najjar, E. Oksenhendler, M. Lipinski, B.V. Chernyak, Y.S. Vassetzky, HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol. (2018). https://doi.org/10.1016/j.redox.2017.11.024

Article  PubMed  Google Scholar 

X. Zheng, Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen, Y. Shen, H. Zhang, R. Sun, Z. Tian, H. Wei, Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. (2019). https://doi.org/10.1038/s41590-019-0511-1

Article  PubMed  PubMed Central  Google Scholar 

J. Verneau, C. Sautés-Fridman, C.M. Sun, Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol. (2020). https://doi.org/10.1016/j.smim.2020.101410

Article  PubMed  Google Scholar 

T.F. Gajewski, H. Schreiber, Y.X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. (2013). https://doi.org/10.1038/ni.2703

Article  PubMed  PubMed Central  Google Scholar 

J. Galon, A. Costes, F. Sanchez-Cabo, A. Kirilovsky, B. Mlecnik, C. Lagorce-Pagès, M. Tosolini, M. Camus, A. Berger, P. Wind, F. Zinzindohoué, P. Bruneval, P.H. Cugnenc, Z. Trajanoski, W.H. Fridman, F. Pagès, Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. (2006). https://doi.org/10.1126/science.1129139

Article  PubMed  Google Scholar 

T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. (2010). https://doi.org/10.1038/ni.1863

Article  PubMed  Google Scholar 

G. Wang, J. Xu, J. Zhao, W. Yin, D. Liu, W. Chen, S.X. Hou, Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat. Commun. (2020). https://doi.org/10.1038/s41467-019-14046-9

Article  PubMed  PubMed Central  Google Scholar 

X. Michelet, L. Dyck, A. Hogan, R.M. Loftus, D. Duquette, K. Wei, S. Beyaz, A. Tavakkoli, C. Foley, R. Donnelly, C. O’Farrelly, M. Raverdeau, A. Vernon, W. Pettee, D. O’Shea, B.S. Nikolajczyk, K.H.G. Mills, M.B. Brenner, D. Finlay, L. Lynch, Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. (2018). https://doi.org/10.1038/s41590-018-0251-7

Article  PubMed  Google Scholar 

R.P. Donnelly, R.M. Loftus, S.E. Keating, K.T. Liou, C.A. Biron, C.M. Gardiner, D.K. Finlay, mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. (2014). https://doi.org/10.4049/jimmunol.1401558

Article  PubMed  Google Scholar 

S. Xiong, L. Dong, L. Cheng, Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol. (2021). https://doi.org/10.1186/s13045-021-01187-y

Article  PubMed  PubMed Central  Google Scholar 

C. Yang, Z. Wang, L. Li, Z. Zhang, X. Jin, P. Wu, S. Sun, J. Pan, K. Su, F. Jia, L. Zhang, H. Wang, X. Yu, X. Shao, K. Wang, F. Qiu, J. Yan, J. Huang, Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis. J. Immunother Cancer. (2021). https://doi.org/10.1136/jitc-2021-002875

Article  PubMed  PubMed Central  Google Scholar 

X.F. Li, D.P. Chen, F.Z. Ouyang, M.M. Chen, Y. Wu, D.M. Kuang, L. Zheng, Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J. Hepatol. (2015). https://doi.org/10.1016/j.jhep.2014.08.023

Article  PubMed  PubMed Central  Google Scholar 

C.M. Rice, L.C. Davies, J.J. Subleski, N. Maio, M. Gonzalez-Cotto, C. Andrews, N.L. Patel, E.M. Palmieri, J.M. Weiss, J.M. Lee, C.M. Annunziata, T.A. Rouault, S.K. Durum, D.W. McVicar, Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07505-2

Article  PubMed  PubMed Central  Google Scholar 

X. Wang, L.P. Hu, W.T. Qin, Q. Yang, D.Y. Chen, Q. Li, K.X. Zhou, P.Q. Huang, C.J. Xu, J. Li, L.L. Yao, Y.H. Wang, G.A. Tian, J.Y. Yang, M.W. Yang, D.J. Liu, Y.W. Sun, S.H. Jiang, X.L. Zhang, Z.G. Zhang, Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat. Commun. (2021). https://doi.org/10.1038/s41467-020-20447-y

Article  PubMed  PubMed Central  Google Scholar 

E.L. Mills, B. Kelly, A. Logan, A.S.H. Costa, M. Varma, C.E. Bryant, P. Tourlomousis, J.H.M. Däbritz, E. Gottlieb, I. Latorre, S.C. Corr, G. McManus, D. Ryan, H.T. Jacobs, M. Szibor, R.J. Xavier, T. Braun, C. Frezza, M.P. Murphy, and L.A. O’Neill, Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell (2016). https://doi.org/10.1016/j.cell.2016.08.064

Z. Tan, N. Xie, H. Cui, D.R. Moellering, E. Abraham, V.J. Thannickal, G. Liu, Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. (2015). https://doi.org/10.4049/jimmunol.1402469

Article  PubMed  PubMed Central  Google Scholar 

P. Su, Q. Wang, E. Bi, X. Ma, L. Liu, M. Yang, J. Qian, Q. Yi, Enhanced lipid Accumulation and Metabolism are required for the differentiation and activation of Tumor-Associated macrophages. Cancer Res. (2020). https://doi.org/10.1158/0008-5472.Can-19-2994

Article  PubMed  PubMed Central  Google Scholar 

D.C. Hinshaw, A. Hanna, T. Lama-Sherpa, B. Metge, S.C. Kammerud, G.A. Benavides, A. Kumar, H.A. Alsheikh, M. Mota, D. Chen, S.W. Ballinger, J.C. Rathmell, S. Ponnazhagan, V. Darley-Usmar, R.S. Samant, L.A. Shevde, Hedgehog signaling regulates metabolism and polarization of Mammary Tumor-Associated macrophages. Cancer Res. (2021). https://doi.org/10.1158/0008-5472.Can-20-1723

Article  PubMed  PubMed Central  Google Scholar 

J. Chen, W. Sun, H. Zhang, J. Ma, P. Xu, Y. Yu, H. Fang, L. Zhou, J. Lv, J. Xie, Y. Liu, K. Tang, B. Huang, Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of IL-1β. Cell. Mol. Immunol. (2020). https://doi.org/10.1038/s41423-019-0313-2

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif