Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame?

Moghaddam B, Marozoff S, Li L, Sayre EC, Zubieta JAA. All-cause and cause-specific mortality in systemic lupus erythematosus: a population-based study. Rheumatology (Oxford). 2021;61(1):367–76.

Article  Google Scholar 

Arnaud L, Tektonidou MG. Long-term outcomes in systemic lupus erythematosus: trends over time and major contributors. Rheumatology (Oxford). 2020;59(Suppl5):v29–38.

Article  CAS  Google Scholar 

Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–32.

Article  Google Scholar 

Yen EY, Singh RR. Brief report: Lupus-An unrecognized leading cause of death in Young females: a Population-based study using Nationwide Death certificates, 2000–2015. Arthritis Rheumatol. 2018;70(8):1251–5.

Article  Google Scholar 

Arneth B. Systemic lupus erythematosus and DNA degradation and elimination defects. Front Immunol. 2019;10:1697.

Article  CAS  Google Scholar 

Mahajan A, Herrmann M, Muñoz LE. Clearance Deficiency and Cell Death pathways: a model for the pathogenesis of SLE. Front Immunol. 2016;7:35.

Article  Google Scholar 

Perry D, Sang A, Yin Y, Zheng YY, Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:271694.

Google Scholar 

Credendino SC, Neumayer C, Cantone I. Genetics and epigenetics of Sex Bias: insights from Human Cancer and Autoimmunity. Trends Genet. 2020;36(9):650–63.

Article  CAS  Google Scholar 

Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med. 2018;5(1):e000199.

Article  Google Scholar 

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38.

Article  CAS  Google Scholar 

Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14(3):309–21.

Article  Google Scholar 

vom Steeg LG, Klein SL. SeXX matters in Infectious Disease Pathogenesis. PLoS Pathog. 2016;12(2):e1005374.

Article  Google Scholar 

Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol. 2019;106(4):919–32.

Article  CAS  Google Scholar 

Jiwrajka N, Anguera MC. The X in sex-biased immunity and autoimmune rheumatic disease. J Exp Med. 2022;219(6).

Zhang Y, Fang Y, Xu N, Tian L, Min X, Chen G, et al. The causal effects of age at menarche, age at first live birth, and estradiol levels on systemic lupus erythematosus: a two-sample mendelian randomization analysis. Lupus. 2023;32(8):928–35.

Article  CAS  Google Scholar 

Krasselt M, Baerwald C, Sex. Symptom Severity, and Quality of Life in Rheumatology. Clin Rev Allergy Immunol. 2019;56(3):346–61.

Article  Google Scholar 

Laffont S, Seillet C, Guéry JC. Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol. 2017;8:108.

Article  Google Scholar 

Lee J, Shin EK, Lee SY, Her YM, Park MK, Kwok SK, et al. Oestrogen up-regulates interleukin-21 production by CD4(+) T lymphocytes in patients with systemic lupus erythematosus. Immunology. 2014;142(4):573–80.

Article  CAS  Google Scholar 

Smith EMD, Lythgoe H, Midgley A, Beresford MW, Hedrich CM. Juvenile-onset systemic lupus erythematosus: update on clinical presentation, pathophysiology and treatment options. Clin Immunol. 2019;209:108274.

Article  CAS  Google Scholar 

Rovenský J, Tuchynová A. Systemic lupus erythematosus in the elderly. Autoimmun Rev. 2008;7(3):235–9.

Article  Google Scholar 

Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK, et al. A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med. 2008;205(5):1099–108.

Article  CAS  Google Scholar 

Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis. 2012;71(8):1418–22.

Article  CAS  Google Scholar 

Liu K, Kurien BT, Zimmerman SL, Kaufman KM, Taft DH, Kottyan LC, et al. X chromosome dose and sex Bias in Autoimmune diseases: increased prevalence of 47,XXX in systemic Lupus Erythematosus and Sjögren’s syndrome. Arthritis Rheumatol. 2016;68(5):1290–300.

Article  CAS  Google Scholar 

Cooney CM, Bruner GR, Aberle T, Namjou-Khales B, Myers LK, Feo L, et al. 46,X,Del(X)(q13) Turner’s syndrome women with systemic lupus erythematosus in a pedigree multiplex for SLE. Genes Immun. 2009;10(5):478–81.

Article  CAS  Google Scholar 

Scofield RH, Bruner GR, Namjou B, Kimberly RP, Ramsey-Goldman R, Petri M, et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum. 2008;58(8):2511–7.

Article  Google Scholar 

Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proceedings of the National Academy of Sciences. 2006;103(26):9970–5.

Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol [Internet]. 2006;6(11):823–35. https://www.nature.com/articles/nri1957

Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, et al. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet. 2013;9(2):e1003336.

Article  CAS  Google Scholar 

Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, Roco JA, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605(7909):349–56.

Article  CAS  Google Scholar 

Stremenova Spegarova J, Sinnappurajar P, Al Julandani D, Navickas R, Griffin H, Ahuja M et al. A de novo TLR7 gain-of-function mutation causing severe monogenic lupus in an infant. J Clin Invest. 2024.

Wang T, Marken J, Chen J, Tran VB, Li QZ, Li M, et al. High TLR7 expression drives the expansion of CD19 + CD24hiCD38hi transitional B cells and Autoantibody production in SLE patients. Front Immunol. 2019;10:1243.

Article  CAS  Google Scholar 

Sakata K, Nakayamada S, Miyazaki Y, Kubo S, Ishii A, Nakano K, et al. Up-Regulation of TLR7-Mediated IFN-α production by Plasmacytoid dendritic cells in patients with systemic Lupus Erythematosus. Front Immunol. 2018;9:1957.

Article  Google Scholar 

Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, Masai R, et al. Up-regulated expression of toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 2008;152(3):482–7.

Article  CAS  Google Scholar 

Savarese E, Steinberg C, Pawar RD, Reindl W, Akira S, Anders HJ, et al. Requirement of toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 2008;58(4):1107–15.

Article  CAS  Google Scholar 

Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ. Inhibition of toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol. 2007;18(6):1721–31.

Article  CAS  Google Scholar 

Heinz LX, Lee J, Kapoor U, Kartnig F, Sedlyarov V, Papakostas K, et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. Nature. 2020;581(7808):316–22.

Article  CAS  Google Scholar 

Deng Y, Tsao BP. Updates in Lupus Genetics. Curr Rheumatol Rep. 2017;19(11):68.

Article  Google Scholar 

Odhams CA, Roberts AL, Vester SK, Duarte CST, Beales CT, Clarke AJ, et al. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in systemic Lupus Erythematosus. Nat Commun. 2019;10(1):2164.

Article  Google Scholar 

Mackay M, Oswald M, Sanchez-Guerrero J, Lichauco J, Aranow C, Kotkin S, et al. Molecular signatures in systemic lupus erythematosus: distinction between disease flare and infection. Lupus Sci Med. 2016;3(1):e000159.

Article  Google Scholar 

Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB, et al. Characterization of cxorf21 provides molecular insight into female-bias immune response in SLE pathogenesis. Front Immunol. 2019;10(OCT):1–11.

Google Scholar 

Harris VM, Harley ITW, Kurien BT, Koelsch KA, Scofield RH. Lysosomal pH is regulated in a sex dependent manner in Immune cells expressing CXorf21. Front Immunol. 2019;10:578.

Article  CAS  Google Scholar 

Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest. 1996;97(9):2063–73.

Article  CAS  Google Scholar 

Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest. 1996;98(3):826–37.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif