Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614
Article CAS PubMed Google Scholar
Yoon S, Cheon SY, Park S et al (2022) Recent advances in optical imaging through deep tissue: imaging probes and techniques. Biomater Res 26:57
Article PubMed PubMed Central Google Scholar
Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943
Article CAS PubMed Google Scholar
Linghu C, Johnson SL, Valdes PA et al (2020) Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics. Cell 183(1682–1698):e1624
Shemesh OA, Linghu C, Piatkevich KD et al (2020) Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron 107(470–486):e411
Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249
Article CAS PubMed Google Scholar
Yu XF, Sun Z, Li M et al (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31:8724–8731
Article CAS PubMed Google Scholar
Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544
Article CAS PubMed Google Scholar
Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Brit J Radiol 88(1054):20150207
Article CAS PubMed PubMed Central Google Scholar
Ovsepian SV, O’Leary VB, Ntziachristos V, Dolly JO (2016) Circumventing brain barriers: nanovehicles for retroaxonal therapeutic delivery. Trends Mol Med 22:983–993
Article CAS PubMed Google Scholar
Thangam R, Paulmurugan R, Kang H (2022) Functionalized nanomaterials as tailored theranostic agents in brain imaging. Nanomaterials 12(1):18
Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyas B (2017) Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci (Weinh) 4:1600279
Ergen PH, Shorter S, Ntziachristos V, Ovsepian SV (2023) Neurotoxin-derived optical probes for biological and medical imaging. Mol Imaging Biol 25:799–814
Article CAS PubMed PubMed Central Google Scholar
Jenner R, Undheim E (2017) Venom: the secrets of nature’s deadliest weapon. Smithsonian
Jurenas D, Fraikin N, Goormaghtigh F, Van Melderen L (2022) Biology and evolution of bacterial toxin-antitoxin systems. Nat Rev Microbiol 20:335–350
Article CAS PubMed Google Scholar
van Thiel J, Khan MA, Wouters RM et al (2022) Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 97:1823–1843
Article PubMed PubMed Central Google Scholar
Wilcox C (2017) Venomous: How Earth’s Deadliest Creatures Mastered Biochemistry. Farrar, Straus and Giroux
Pirazzini M, Montecucco C, Rossetto O (2022) Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 96:1521–1539
Article CAS PubMed PubMed Central Google Scholar
Dong M, Masuyer G, Stenmark P (2019) Botulinum and Tetanus Neurotoxins. Annu Rev Biochem 88:811–837
Article CAS PubMed Google Scholar
Rossetto O, Montecucco C (2019) Tables of toxicity of botulinum and tetanus neurotoxins. Toxins (Basel) 11(12):686
Article CAS PubMed Google Scholar
Montecucco C, Schiavo G (1995) Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys 28:423–472
Article CAS PubMed Google Scholar
Megighian A, Pirazzini M, Fabris F, Rossetto O, Montecucco C (2021) Tetanus and tetanus neurotoxin: From peripheral uptake to central nervous tissue targets. J Neurochem 158:1244–1253
Article CAS PubMed Google Scholar
Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109:1584–1595
Article CAS PubMed Google Scholar
Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617
Article CAS PubMed Google Scholar
Schiavo G, Benfenati F, Poulain B et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835
Article CAS PubMed Google Scholar
Ovsepian SV, O’Leary VB, Ayvazyan NM, Al-Sabi A, Ntziachristos V, Dolly JO (2019) Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 193:135–155
Article CAS PubMed Google Scholar
Dolly JO, Meng J, Wang J et al (2009) Multiple Steps in the Blockade of Exocytosis by Botulinum Neurotoxins. In: Toxin B (ed) Jankovic J, Albanese A, Atassi MZ, Dolly JO, Hallett M, Mayer NH. Saunders, W.B, pp 1-14.e11
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ et al (2023) Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 17:1226194
Article CAS PubMed PubMed Central Google Scholar
Meunier FA, Schiavo G, Molgo J (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. J Physiol Paris 96:105–113
Article CAS PubMed Google Scholar
Johnson EA, Montecucco C (2008) Chapter 11 Botulism. Elsevier
Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457–460
Article CAS PubMed Google Scholar
Fishman PS (2009) Tetanus Toxin. In: Toxin B (ed) Jankovic J, Albanese A, Atassi MZ, Dolly JO, Hallett M, Mayer NH. Saunders, W.B, pp 406-424.e401
Ovsepian SV, Bodeker M, O’Leary VB, Lawrence GW, Oliver Dolly J (2015) Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Brain Struct Funct 220:1825–1838
Dolly JO, Lawrence GW, Meng J, Wang J, Ovsepian SV (2009) Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 9:326–335
Article CAS PubMed Google Scholar
Jankovic J (2004) Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry 75:951–957
Article CAS PubMed PubMed Central Google Scholar
Jankovic J, Albanese A, Atassi MZ, Dolly JO, Hallett M, Mayer NH (2009) Botulinum toxin: therapeutic clinical practice and science. Elsevier Health Sciences
Meng J, Ovsepian SV, Wang J et al (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992
留言 (0)