Thompson N, Adams DJ, Ranzani M (2017) Synthetic lethality: emerging targets and opportunities in melanoma. Pigment Cell Melanoma Res 30:183–193. https://doi.org/10.1111/pcmr.12573
Article PubMed PubMed Central Google Scholar
Wang J, Zhang Q, Han J et al (2022) Computational methods, databases and tools for synthetic lethality prediction. Brief Bioinform. https://doi.org/10.1093/bib/bbac106
Article PubMed PubMed Central Google Scholar
Liu QW, Yang ZW, Tang QH et al (2024) The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2024.116288
Du Y, Luo L, Xu X et al (2023) Unleashing the power of synthetic lethality: augmenting treatment efficacy through synergistic integration with chemotherapy drugs. Pharmaceutics 15(10):2433. https://doi.org/10.3390/pharmaceutics15102433
Article CAS PubMed PubMed Central Google Scholar
Schäffer AA, Chung Y, Kammula AV et al (2024) A systematic analysis of the landscape of synthetic lethality-driven precision oncology. Med 5(1):73-89.e9. https://doi.org/10.1016/j.medj.2023.12.009
Del Gaudio N et al (2019) BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis 10:338. https://doi.org/10.1038/s41419-019-1570-9
Article PubMed PubMed Central Google Scholar
Weisberg E et al (2022) BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J 12:110. https://doi.org/10.1038/s41408-022-00704-7
Article PubMed PubMed Central Google Scholar
Ahmed NS, Gatchalian J, Ho J et al (2022) BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Proc Natl Acad Sci U S A 119(1):e2110812119. https://doi.org/10.1073/pnas.2110812119
Article CAS PubMed Google Scholar
Wang L, Oh TG, Magida J et al (2021) Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proc Natl Acad Sci U S A 118(35):e2109517118. https://doi.org/10.1073/pnas.2109517118
Article CAS PubMed PubMed Central Google Scholar
Zhu X, Liao Y, Tang L (2020) Targeting BRD9 for cancer treatment: a new strategy. OncoTargets and Therapy 13:13191–13200. https://doi.org/10.1073/pnas.2109517118
Article CAS PubMed PubMed Central Google Scholar
Quentmeier H, Reinhardt J, Zaborski M, Drexler HG (2003) FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 17(1):120–124. https://doi.org/10.1038/sj.leu.2402740
Article CAS PubMed Google Scholar
Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9
Article CAS PubMed PubMed Central Google Scholar
Ju HQ, Zhan G, Huang A et al (2017) ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia 31(10):2143–2150. https://doi.org/10.1038/leu.2017.45
Article CAS PubMed PubMed Central Google Scholar
Perl AE, Martinelli G, Cortes JE et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated. N Engl J Med 381(18):1728–1740. https://doi.org/10.1056/NEJMoa1902688
Article CAS PubMed Google Scholar
Brinton LT, Sher S, Williams K et al (2020) Cotargeting of XPO1 enhances the antileukemic activity of midostaurin and gilteritinib in acute myeloid leukemia. Cancers (Basel) 12(6):1574. https://doi.org/10.3390/cancers12061574
Article CAS PubMed Google Scholar
Brinton LT, Zhang P, Williams K et al (2020) Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol 13(1):139. https://doi.org/10.1186/s13045-020-00973-4
Article CAS PubMed PubMed Central Google Scholar
Abematsu T, Nishikawa T, Shiba N et al (2021) Pediatric acute myeloid leukemia co-expressing FLT3/ITD and NUP98/NSD1 treated with gilteritinib plus allogenic peripheral blood stem cell transplantation: a case report. Pediatr Blood Cancer 68(11):e29216. https://doi.org/10.1002/pbc.29216
Zhang P, Brinton LT, Gharghabi M et al (2022) Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor mediated synergistic antileukemic actions. Sci Adv 8(37):eabp9005. https://doi.org/10.1126/sciadv.abp9005
Article CAS PubMed PubMed Central Google Scholar
Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019
Article CAS PubMed PubMed Central Google Scholar
Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52(11):1219–1226. https://doi.org/10.1038/s41588-020-00710-0
Article CAS PubMed PubMed Central Google Scholar
Miller PG, Sathappa M, Moroco JA et al (2022) Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun 13(1):3778. https://doi.org/10.1038/s41467-022-30463-9
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Hsu JI, Braekeleer ED et al (2024) SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. bioRxiv 2023.08.31.555634. https://doi.org/10.1101/2023.08.31.555634
Tiwari R, Singh AK (2024) Neurofibromatosis type 2. StatPearls, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK470350/. Accessed 3 Oct 2022
Wang Y, Zhu Y, Gu Y et al (2021) Stabilization of Motin family proteins in NF2-deficient cells prevents full activation of YAP/TAZ and rapid tumorigenesis. Cell Rep 36(8):109596. https://doi.org/10.1016/j.celrep.2021.109596
Article CAS PubMed Google Scholar
Murai S, Ando A, Ebara S et al (2017) Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions. Oncogenesis 6(5):e329. https://doi.org/10.1038/oncsis.2017.34
Article CAS PubMed PubMed Central Google Scholar
Mele L, Paino F, Papaccio F et al (2018) A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death Dis 9(5):572. https://doi.org/10.1038/s41419-018-0635-5
Article CAS PubMed PubMed Central Google Scholar
Geller JI, Roth JJ, Biegel JA (2015) Biology and treatment of rhabdoid tumor. Crit Rev Oncog 20(3–4):199–216. https://doi.org/10.1615/critrevoncog.2015013566
Article PubMed PubMed Central Google Scholar
Needs T, Fillman EP (2024) Epithelioid sarcoma. StatPearls, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK532911/. Accessed 2 Jul 2024
Kohashi K, Oda Y (2017) Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci 108(4):547–552. https://doi.org/10.1111/cas.13173
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T (2022) Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics 12(11):4935–4948. https://doi.org/10.7150/thno.73223
留言 (0)