A Recent Overview of Molecular Pathways in Synthetic Lethality as a Proposed Valid Target in Oncology: Current Insights and Future Directions

Thompson N, Adams DJ, Ranzani M (2017) Synthetic lethality: emerging targets and opportunities in melanoma. Pigment Cell Melanoma Res 30:183–193. https://doi.org/10.1111/pcmr.12573

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Zhang Q, Han J et al (2022) Computational methods, databases and tools for synthetic lethality prediction. Brief Bioinform. https://doi.org/10.1093/bib/bbac106

Article  PubMed  PubMed Central  Google Scholar 

Liu QW, Yang ZW, Tang QH et al (2024) The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2024.116288

Du Y, Luo L, Xu X et al (2023) Unleashing the power of synthetic lethality: augmenting treatment efficacy through synergistic integration with chemotherapy drugs. Pharmaceutics 15(10):2433. https://doi.org/10.3390/pharmaceutics15102433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schäffer AA, Chung Y, Kammula AV et al (2024) A systematic analysis of the landscape of synthetic lethality-driven precision oncology. Med 5(1):73-89.e9. https://doi.org/10.1016/j.medj.2023.12.009

Article  PubMed  Google Scholar 

Del Gaudio N et al (2019) BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis 10:338. https://doi.org/10.1038/s41419-019-1570-9

Article  PubMed  PubMed Central  Google Scholar 

Weisberg E et al (2022) BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J 12:110. https://doi.org/10.1038/s41408-022-00704-7

Article  PubMed  PubMed Central  Google Scholar 

Ahmed NS, Gatchalian J, Ho J et al (2022) BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Proc Natl Acad Sci U S A 119(1):e2110812119. https://doi.org/10.1073/pnas.2110812119

Article  CAS  PubMed  Google Scholar 

Wang L, Oh TG, Magida J et al (2021) Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proc Natl Acad Sci U S A 118(35):e2109517118. https://doi.org/10.1073/pnas.2109517118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, Liao Y, Tang L (2020) Targeting BRD9 for cancer treatment: a new strategy. OncoTargets and Therapy 13:13191–13200. https://doi.org/10.1073/pnas.2109517118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quentmeier H, Reinhardt J, Zaborski M, Drexler HG (2003) FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 17(1):120–124. https://doi.org/10.1038/sj.leu.2402740

Article  CAS  PubMed  Google Scholar 

Daver N, Schlenk RF, Russell NH, Levis MJ (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ju HQ, Zhan G, Huang A et al (2017) ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia 31(10):2143–2150. https://doi.org/10.1038/leu.2017.45

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perl AE, Martinelli G, Cortes JE et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated. N Engl J Med 381(18):1728–1740. https://doi.org/10.1056/NEJMoa1902688

Article  CAS  PubMed  Google Scholar 

Brinton LT, Sher S, Williams K et al (2020) Cotargeting of XPO1 enhances the antileukemic activity of midostaurin and gilteritinib in acute myeloid leukemia. Cancers (Basel) 12(6):1574. https://doi.org/10.3390/cancers12061574

Article  CAS  PubMed  Google Scholar 

Brinton LT, Zhang P, Williams K et al (2020) Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol 13(1):139. https://doi.org/10.1186/s13045-020-00973-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abematsu T, Nishikawa T, Shiba N et al (2021) Pediatric acute myeloid leukemia co-expressing FLT3/ITD and NUP98/NSD1 treated with gilteritinib plus allogenic peripheral blood stem cell transplantation: a case report. Pediatr Blood Cancer 68(11):e29216. https://doi.org/10.1002/pbc.29216

Article  PubMed  Google Scholar 

Zhang P, Brinton LT, Gharghabi M et al (2022) Targeting OXPHOS de novo purine synthesis as the nexus of FLT3 inhibitor mediated synergistic antileukemic actions. Sci Adv 8(37):eabp9005. https://doi.org/10.1126/sciadv.abp9005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52(11):1219–1226. https://doi.org/10.1038/s41588-020-00710-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller PG, Sathappa M, Moroco JA et al (2022) Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun 13(1):3778. https://doi.org/10.1038/s41467-022-30463-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Hsu JI, Braekeleer ED et al (2024) SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. bioRxiv 2023.08.31.555634. https://doi.org/10.1101/2023.08.31.555634

Tiwari R, Singh AK (2024) Neurofibromatosis type 2. StatPearls, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK470350/. Accessed 3 Oct 2022

Wang Y, Zhu Y, Gu Y et al (2021) Stabilization of Motin family proteins in NF2-deficient cells prevents full activation of YAP/TAZ and rapid tumorigenesis. Cell Rep 36(8):109596. https://doi.org/10.1016/j.celrep.2021.109596

Article  CAS  PubMed  Google Scholar 

Murai S, Ando A, Ebara S et al (2017) Inhibition of malic enzyme 1 disrupts cellular metabolism and leads to vulnerability in cancer cells in glucose-restricted conditions. Oncogenesis 6(5):e329. https://doi.org/10.1038/oncsis.2017.34

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mele L, Paino F, Papaccio F et al (2018) A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death Dis 9(5):572. https://doi.org/10.1038/s41419-018-0635-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geller JI, Roth JJ, Biegel JA (2015) Biology and treatment of rhabdoid tumor. Crit Rev Oncog 20(3–4):199–216. https://doi.org/10.1615/critrevoncog.2015013566

Article  PubMed  PubMed Central  Google Scholar 

Needs T, Fillman EP (2024) Epithelioid sarcoma. StatPearls, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK532911/. Accessed 2 Jul 2024

Kohashi K, Oda Y (2017) Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci 108(4):547–552. https://doi.org/10.1111/cas.13173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T (2022) Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics 12(11):4935–4948. https://doi.org/10.7150/thno.73223

Article  CAS  PubMed 

留言 (0)

沒有登入
gif