Driver fatigue recognition using limited amount of individual electroencephalogram

Sikander G, Anwar S. Driver fatigue detection systems: a review. IEEE Trans Intell Transp Syst. 2018;20:2339–52. https://doi.org/10.1109/tits.2018.2868499.

Article  Google Scholar 

Liu F, Li X, Lv T, Xu F. A review of driver fatigue detection: progress and prospect. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6; https://doi.org/10.1109/ICCE.2019.8662098

Sigari M-H, Fathy M, Soryani M. A driver face monitoring system for fatigue and distraction detection. Int J Veh Technol. 2013;2013:1–11. https://doi.org/10.1155/2013/263983

Mandal B, Li L, Wang GS, Lin J. Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Trans Intell Transp Syst. 2016;18:545–57. https://doi.org/10.1109/TITS.2016.2582900.

Article  Google Scholar 

Alioua N, Amine A, Rziza M. Driver’s fatigue detection based on yawning extraction. Int J Veh Technol. 2014;2014. https://doi.org/10.1155/2014/678786.

Barr L, Popkin S, Howarth H. An evaluation of emerging driver fatigue detection measures and technologies; No. FMCSA-RRR-09-005. United States. Department of Transportation. Federal Motor Carrier Safety Administration. 2009; https://rosap.ntl.bts.gov/view/dot/34394

Dingus TA, Jahns SK, Horowitz AD, Knipling R. Human factors design issues for crash avoidance systems. In Barfield W, Dingus TA (eds.) Human factors in intelligent transportation systems. Psychology Press, New York, NY, USA; 2014; pp. 55–93.

McDonald AD, Schwarz C, Lee JD, Brown TL. Real-time detection of drowsiness related lane departures using steering wheel angle. In Proceedings of the human factors and ergonomics society annual meeting, Sage Publications: Los Angeles, CA, USA. 2012; pp. 2201–2205; https://doi.org/10.1177/1071181312561464

Wakita T, Ozawa K, Miyajima C, Igarashi K, Itou K, Takeda K, Itakura F. Driver identification using driving behavior signals. IEICE Trans Inf Syst. 2006;89:1188–94. https://doi.org/10.4271/2005-08-0569.

Article  Google Scholar 

Ingre M, Åkerstedt T, Peters B, Anund A, Kecklund G. Subjective sleepiness, simulated driving performance and blink duration: examining individual differences. J Sleep Res. 2006;15:47–53. https://doi.org/10.1111/j.1365-2869.2006.00504.x.

Article  Google Scholar 

Casson AJ, Yates DC, Smith SJ, Duncan JS, Rodriguez-Villegas E. Wearable electroencephalography. IEEE Eng Med Biol Mag. 2010;29:44–56. https://doi.org/10.1109/MEMB.2010.936545.

Article  Google Scholar 

Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9:53–71. https://doi.org/10.1007/s13534-018-00093-6.

Article  Google Scholar 

Trejo LJ, Kubitz K, Rosipal R, Kochavi RL, Montgomery LD. EEG-based estimation and classification of mental fatigue. Psychol. 2015;6:572. https://doi.org/10.4236/psych.2015.65055.

Article  Google Scholar 

Lin C-T, Chuang C-H, Huang C-S, Tsai S-F, Lu S-W, Chen Y-H, Ko L-W. Wireless and wearable EEG system for evaluating driver vigilance. IEEE Trans Biomed Circuits Syst. 2014;8:165–76. https://doi.org/10.1109/TBCAS.2014.2316224.

Article  Google Scholar 

Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990;52:29–37. https://doi.org/10.3109/00207459008994241.

Article  Google Scholar 

Wascher E, Rasch B, Sänger J, Hoffmann S, Schneider D, Rinkenauer G, Heuer H, Gutberlet I. Frontal theta activity reflects distinct aspects of mental fatigue. Biol Psychol. 2014;96:57–65. https://doi.org/10.1016/j.biopsycho.2013.11.010.

Article  Google Scholar 

Harvy J, Bezerianos A, Li J. Reliability of EEG measures in driving fatigue. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2743–53. https://doi.org/10.1109/TNSRE.2022.3208374.

Article  Google Scholar 

Horne JA, Baulk SD. Awareness of sleepiness when driving. Psychophysiol. 2004;41:161–5. https://doi.org/10.1046/j.1469-8986.2003.00130.x.

Article  Google Scholar 

Vuckovic A, Radivojevic V, Chen AC, Popovic D. Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Med Eng Phys. 2002;24:349–60. https://doi.org/10.1016/S1350-4533(02)00030-9.

Article  Google Scholar 

Yeo MV, Li X, Shen K, Wilder-Smith EP. Can SVM be used for automatic EEG detection of drowsiness during car driving? Saf Sci. 2009;47:115–24. https://doi.org/10.1016/j.ssci.2008.01.007.

Article  Google Scholar 

Mu Z, Hu J, Min J. Driver fatigue detection system using electroencephalography signals based on combined entropy features. Appl Sci. 2017;7:150. https://doi.org/10.3390/app7020150.

Article  Google Scholar 

Wang F, Wan Y, Li M, Huang H, Li L, Hou X, Pan J, Wen Z, Li J. Recent advances in fatigue detection Algorithm based on EEG. Intell Autom Soft Comput. 2023;35. https://doi.org/10.32604/iasc.2023.029698.

Chaudhuri A, Routray A. Driver fatigue detection through chaotic entropy analysis of cortical sources obtained from scalp EEG signals. IEEE Trans Intell Transp Syst. 2019;21:185–98. https://doi.org/10.1109/TITS.2018.2890332.

Article  Google Scholar 

Xu T, Wang H, Lu G, Wan F, Deng M, Qi P, Bezerianos A, Guan C, Sun Y. E-key: an EEG-based biometric authentication and driving fatigue detection system. IEEE Trans Affect Comput. 2021;14(2):864–77. https://doi.org/10.1109/TAFFC.2021.3133443.

Article  Google Scholar 

Tuncer T, Dogan S, Subasi A. EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed Signal Process Control. 2021;68:102591. https://doi.org/10.1016/j.bspc.2021.102591.

Article  Google Scholar 

Xu J, Mitra S, Van Hoof C, Yazicioglu RF, Makinwa KA. Active electrodes for wearable EEG acquisition: review and electronics design methodology. IEEE Rev Biomed Eng. 2017;10:187–98. https://doi.org/10.1109/RBME.2017.2656388.

Article  Google Scholar 

Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 2018;15:031005. https://doi.org/10.1088/1741-2552/aab2f2.

Article  Google Scholar 

Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16:051001. https://doi.org/10.1088/1741-2552/ab260c.

Article  Google Scholar 

Wan Z, Yang R, Huang M, Zeng N, Liu X. A review on transfer learning in EEG signal analysis. Neurocomputing. 2021;421:1–14. https://doi.org/10.1016/j.neucom.2020.09.017.

Article  Google Scholar 

Jas M, Engemann DA, Bekhti Y, Raimondo F, Gramfort A. Autoreject: automated artifact rejection for MEG and EEG data. NeuroImage. 2017;159:417–29.

Article  Google Scholar 

Lashgari E, Liang D, Maoz U. Data augmentation for deep-learning-based electroencephalography. J Neurosci Methods. 2020;346:108885. https://doi.org/10.1016/j.jneumeth.2020.108885.

Article  Google Scholar 

Cole S, Voytek B. Cycle-by-cycle analysis of neural oscillations. J Neurophysiol. 2019;122:849–61. https://doi.org/10.1152/jn.00273.2019.

Article  Google Scholar 

Darvishi-Bayazi M-J, Ghaemi MS, Lesort T, Arefin MR, Faubert J, Rish I. Amplifying pathological detection in EEG signaling pathways through cross-dataset transfer learning. Comput Biol Med. 2024;169:107893. https://doi.org/10.1016/j.compbiomed.2023.107893.

Article  Google Scholar 

Liang Z, Zheng Z, Chen W, Pei Z, Wang J, Chen J. A novel deep transfer learning framework integrating general and domain-specific features for EEG-based brain–computer interface. Biomed Signal Process Control. 2024;95:106311. https://doi.org/10.1016/j.bspc.2024.106311.

Article  Google Scholar 

Li J, Qiu S, Shen Y-Y, Liu C-L, He H. Multisource transfer learning for cross-subject EEG emotion recognition. IEEE Trans Cybern. 2019;50:3281–93. https://doi.org/10.1109/TCYB.2019.2904052.

Article  Google Scholar 

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

Article  Google Scholar 

Jung T-P, Makeig S, Humphries C, Lee T-W, Mckeown MJ, Iragui V, Sejnowski TJ. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37:163–78. https://doi.org/10.1111/1469-8986.3720163.

Article  Google Scholar 

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Group BDC. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54:313–27. https://doi.org/10.1016/j.neuroimage.2010.07.033.

Article  Google Scholar 

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011;2011:1–13. https://doi.org/10.1155/2011/879716

Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J NeuroEng Rehabil. 2008;5:1–33. https://doi.org/10.1186/1743-0003-5-25.

Article  Google Scholar 

Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15:70–3. https://doi.org/10.1109/TAU.1967.1161901.

Article  Google Scholar 

Kang X, Herron TJ, Cate AD, Yund EW, Woods DL. Hemispherically-unified surface maps of human cerebral cortex: Reliability and Hemispheric asymmetries. PLoS ONE. 2012;7(9):e45582. https://doi.org/10.1371/journal.pone.0045582.

Article  Google Scholar 

Wu D, Xu Y, Lu B-L. Transfer learning for EEG-based brain–computer interfaces: a review of progress made since 2016. IEEE Trans Cognit Dev Syst. 2020;14:4–19. https://doi.org/10.1109/TCDS.2020.3007453.

Article  Google Scholar 

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409 1556. 2014. https://doi.org/10.48550/arXiv.1409.1556.

Article 

留言 (0)

沒有登入
gif