Physiologically Based Pharmacokinetic Modelling in Critically Ill Children Receiving Anakinra While on Extracorporeal Life Support

Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6(3):223–30. https://doi.org/10.1016/S2213-2600(18)30063-8.

Article  PubMed  Google Scholar 

Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in US children’s hospitals. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2014;15(9):798–805. https://doi.org/10.1097/PCC.0000000000000225.

Article  Google Scholar 

Odetola FO, Gebremariam A, Freed GL. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics. 2007;119(3):487–94. https://doi.org/10.1542/peds.2006-2353.

Article  PubMed  Google Scholar 

Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebbar KB. Pediatric severe sepsis: current trends and outcomes from the pediatric health information systems database. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2014;15(9):828–38. https://doi.org/10.1097/PCC.0000000000000254.

Article  Google Scholar 

Watson RS, Crow SS, Hartman ME, Lacroix J, Odetola FO. Epidemiology and outcomes of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017;18(3):S4–16. https://doi.org/10.1097/PCC.0000000000001047.

Article  Google Scholar 

Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2020;21(2):e52–106. https://doi.org/10.1097/PCC.0000000000002198.

Article  Google Scholar 

Leteurtre S, Martinot A, Duhamel A, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet Lond Engl. 2003;362(9379):192–7. https://doi.org/10.1016/S0140-6736(03)13908-6.

Article  Google Scholar 

Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. 2016;44(2):275–81. https://doi.org/10.1097/CCM.0000000000001402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carcillo JA, Halstead ES, Hall MW, et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2017;18(6):513–23. https://doi.org/10.1097/PCC.0000000000001122.

Article  Google Scholar 

Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–17. https://doi.org/10.1001/jama.2019.5791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leventogiannis K, Kyriazopoulou E, Antonakos N, et al. Toward personalized immunotherapy in sepsis: the PROVIDE randomized clinical trial. Cell Rep Med. 2022;3(11): 100817. https://doi.org/10.1016/j.xcrm.2022.100817.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean JM. Evolution of the collaborative pediatric critical care research network (CPCCRN). Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2022;23(12):1049–55. https://doi.org/10.1097/PCC.0000000000003098.

Article  Google Scholar 

Tandukar S, Palevsky PM. Continuous renal replacement therapy: who, when, why, and how. Chest. 2019;155(3):626–38. https://doi.org/10.1016/j.chest.2018.09.004.

Article  CAS  PubMed  Google Scholar 

Ricci Z, Goldstein SL. Pediatric continuous renal replacement therapy. Contrib Nephrol. 2016;187:121–30. https://doi.org/10.1159/000442370.

Article  PubMed  Google Scholar 

Cohen S, Hurd E, Cush J, et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(3):614–24. https://doi.org/10.1002/art.10141.

Article  CAS  PubMed  Google Scholar 

Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355(6):581–92. https://doi.org/10.1056/NEJMoa055137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatol Oxf Engl. 2019;58(1):5–17. https://doi.org/10.1093/rheumatology/key006.

Article  CAS  Google Scholar 

Kumar B, Aleem S, Saleh H, Petts J, Ballas ZK. A personalized diagnostic and treatment approach for macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis in adults. J Clin Immunol. 2017;37(7):638–43. https://doi.org/10.1007/s10875-017-0439-x.

Article  PubMed  Google Scholar 

Rajasekaran S, Kruse K, Kovey K, et al. Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically ill children*. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2014;15(5):401–8. https://doi.org/10.1097/PCC.0000000000000078.

Article  Google Scholar 

Fisher CJ, Slotman GJ, Opal SM, et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med. 1994;22(1):12–21. https://doi.org/10.1097/00003246-199401000-00008.

Article  PubMed  Google Scholar 

Fisher CJ, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra sepsis syndrome study group. JAMA. 1994;271(23):1836–43.

Article  PubMed  Google Scholar 

Opal SM, Fisher CJ, Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The interleukin-1 receptor antagonist sepsis investigator group. Crit Care Med. 1997;25(7):1115–24. https://doi.org/10.1097/00003246-199707000-00010.

Article  CAS  PubMed  Google Scholar 

Watt KM, Cohen-Wolkowiez M, Barrett JS, et al. Physiologically based pharmacokinetic approach to determine dosing on extracorporeal life support: fluconazole in children on ECMO. CPT Pharmacomet Syst Pharmacol. 2018;7(10):629–37. https://doi.org/10.1002/psp4.12338.

Article  CAS  Google Scholar 

Fuhr LM, Hanke N, Meibohm B, Lehr T. Effective removal of dabigatran by idarucizumab or hemodialysis: a physiologically based pharmacokinetic modeling analysis. Clin Pharmacokinet. 2020;59(6):809–25. https://doi.org/10.1007/s40262-019-00857-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubinsky SDJ, Watt KM, Imburgia CE, et al. Anakinra removal by continuous renal replacement therapy: an ex vivo analysis. Crit Care Explor. 2023;5(12): e1010. https://doi.org/10.1097/CCE.0000000000001010.

Article  PubMed  PubMed Central  Google Scholar 

Niederalt C, Kuepfer L, Solodenko J, et al. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn. 2018;45(2):235–57. https://doi.org/10.1007/s10928-017-9559-4.

Article  CAS  PubMed  Google Scholar 

Willmann S, Höhn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31. https://doi.org/10.1007/s10928-007-9053-5.

Article  PubMed  Google Scholar 

Schlender JF, Meyer M, Thelen K, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89. https://doi.org/10.1007/s40262-016-0422-3.

Article  CAS 

留言 (0)

沒有登入
gif