Altarifi AA, David B, Muchhala KH, Blough BE, Akbarali H, Negus SS (2017) Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol 31:730–739. https://doi.org/10.1177/0269881116689257
Article CAS PubMed PubMed Central Google Scholar
Armendariz A, Nazarian A (2018) Morphine antinociception on thermal sensitivity and place conditioning in male and female rats treated with intraplantar complete freund’s adjuvant. Behav Brain Res 343:21–27. https://doi.org/10.1016/j.bbr.2018.01.031
Article CAS PubMed Google Scholar
Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498. https://doi.org/10.1126/science.286.5449.2495
Article CAS PubMed Google Scholar
Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723. https://doi.org/10.1038/35047086
Article CAS PubMed Google Scholar
Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG (2003) Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J Neurosci 23:10265–10273. https://doi.org/10.1523/JNEUROSCI.23-32-10265.2003
Article CAS PubMed PubMed Central Google Scholar
Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL et al (2016) Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 9:ra117. https://doi.org/10.1126/scisignal.aai8441
Article CAS PubMed PubMed Central Google Scholar
Chan HCS, McCarthy D, Li J, Palczewski K, Yuan S (2017) Designing safer analgesics via mu-opioid receptor pathways. Trends Pharmacol Sci 38:1016–1037. https://doi.org/10.1016/j.tips.2017.08.004
Article CAS PubMed PubMed Central Google Scholar
Cornelissen JC, Blough BE, Bohn LM, Negus SS, Banks ML (2021) Some effects of putative G-protein biased mu-opioid receptor agonists in male rhesus monkeys. Behav Pharmacol. https://doi.org/10.1097/FBP.0000000000000634
Article PubMed PubMed Central Google Scholar
DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM et al (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717. https://doi.org/10.1124/jpet.112.201616
Article CAS PubMed Google Scholar
Ding Z, Wang K, Wang B, Zhou N, Li H, Yan B (2016) Efficacy and tolerability of oxycodone versus fentanyl for intravenous patient-controlled analgesia after gastrointestinal laparotomy: a prospective, randomized, double-blind study. Medicine (Baltimore) 95:e4943. https://doi.org/10.1097/MD.0000000000004943
Article CAS PubMed Google Scholar
Ding H, Kiguchi N, Perrey DA, Nguyen T, Czoty PW, Hsu FC et al (2020) Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in non-human primates. Br J Anaesth 125:596–604. https://doi.org/10.1016/j.bja.2020.06.057
Article CAS PubMed PubMed Central Google Scholar
Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD, Alamein C et al (2020) Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci Signal. https://doi.org/10.1126/scisignal.aaz3140
Grim TW, Schmid CL, Stahl EL, Pantouli F, Ho JH, Acevedo-Canabal A et al (2020) A G protein signaling-biased agonist at the μ-opioid receptor reverses morphine tolerance while preventing morphine withdrawal. Neuropsychopharmacology 45:416–425. https://doi.org/10.1038/s41386-019-0491-8
Article CAS PubMed Google Scholar
Gross JL, Pareta AR, Elkassabany NM (2019) Pain management in trauma in the age of the opioid crisis. Anesthesiol Clin 37:79–91. https://doi.org/10.1016/j.anclin.2018.09.010
Kenakin T (2003) Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 24:346–354. https://doi.org/10.1016/S0165-6147(03)00167-6
Article CAS PubMed Google Scholar
Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26. https://doi.org/10.1016/s0165-6147(98)01279-6
Article CAS PubMed Google Scholar
Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W, Wojtas A, Golembiowska K et al (2019) Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine. Br J Pharmacol 176:4434–4445. https://doi.org/10.1111/bph.14805
Article CAS PubMed PubMed Central Google Scholar
Kudla L, Bugno R, Podlewska S, Szumiec L, Wiktorowska L, Bojarski AJ, Przewlocki R (2021) Comparison of an addictive potential of μ-opioid receptor agonists with G Protein bias: behavioral and molecular modeling studies. Pharmaceutics 14:55. https://doi.org/10.3390/pharmaceutics14010055
Article CAS PubMed PubMed Central Google Scholar
Lacy RT, Strickland JC, Feinstein MA, Robinson AM, Smith MA (2016) The effects of sex, estrous cycle, and social contract on cocaine and heroin self-administration in rats. Psychopharmacology 233:2301–2310. https://doi.org/10.1007/s00213-016-4368-9
Legakis LP, Bigbee JW, Negus SS (2018) Lack of paclitaxel effects on intracranial self-stimulation in male and female rats: comparison to mechanical sensitivity. Behav Pharmacol 29:290–298. https://doi.org/10.1097/FBP.0000000000000378
Article CAS PubMed PubMed Central Google Scholar
Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G et al (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190. https://doi.org/10.1038/nature19112
Article CAS PubMed PubMed Central Google Scholar
National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington. https://doi.org/10.17226/12910
Pantouli F, Grim TW, Schmid CL, Acevedo-Canabal A, Kennedy NM, Cameron MD et al (2021) Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. Neuropharmacology 185:108439. https://doi.org/10.1016/j.neuropharm.2020.108439
Article CAS PubMed Google Scholar
Pascual D, Goicoechea C, Burgos E, Martin MI (2010) Antinociceptive effect of three common analgesic drugs on peripheral neuropathy induced by paclitaxel in rats. Pharmacol Biochem Behav 95:331–337. https://doi.org/10.1016/j.pbb.2010.02.009
Article CAS PubMed Google Scholar
Pasternak GW, Pan YX (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol Rev 65:1257–1317. https://doi.org/10.1124/pr.112.007138
Article CAS PubMed PubMed Central Google Scholar
Pergolizzi JV, LeQuang JA, Taylor R, Ossipov MH, Colucci D, Raffa RB (2018) Designing safer analgesics: a focus on mu-opioid receptor pathways. Expert Opin Drug Discov 13:965–972. https://doi.org/10.1080/17460441
Article CAS PubMed Google Scholar
Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 26:241–250. https://doi.org/10.1016/j.bmcl.2015.12.024
留言 (0)