Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals

Barss B et al (2022) Neural substrates of Transcutaneous spinal cord stimulation: Neuromodulation across multiple segments of the spinal cord. J Clin Med 11. https://doi.org/10.3390/jcm11030639

Benavides FD et al (2020) Cortical and subcortical effects of Transcutaneous Spinal Cord Stimulation in humans with Tetraplegia. J Neurosci 40:2633–2643. https://doi.org/10.1523/JNEUROSCI.2374-19.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brooke JD, McIlroy WE, Collins DF (1992) Movement features and H-reflex modulation. I. Pedalling versus matched controls. Brain Res 582:78–84. https://doi.org/10.1016/0006-8993(92)90319-5

Article  CAS  PubMed  Google Scholar 

Brown DA, Kautz SA (1998) Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke 29:598–606. https://doi.org/10.1161/01.str.29.3.598

Article  CAS  PubMed  Google Scholar 

Courtine G et al (2007) Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans. J Physiol 582:1125–1139. https://doi.org/10.1113/jphysiol.2007.128447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crone C, Nielsen J (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res 78:28–32. https://doi.org/10.1007/BF00230683

Article  CAS  PubMed  Google Scholar 

Crone C et al (1990) Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and the cat. Exp Brain Res 81:35–45. https://doi.org/10.1007/BF00230098

Article  CAS  PubMed  Google Scholar 

Crone C et al (1994) Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain 117(5):1161–1168. https://doi.org/10.1093/brain/117.5.1161

Article  PubMed  Google Scholar 

Ericson MO et al (1985) Muscular activity during ergometer cycling. Scand J Rehabil Med 17:53–61

Article  CAS  PubMed  Google Scholar 

Faul F et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/bf03193146

Article  PubMed  Google Scholar 

Fujiwara T (2020) The role of spinal reciprocal inhibition and intracortical inhibition in functional recovery from stroke. Exp Brain Res 238:1701–1705. https://doi.org/10.1007/s00221-020-05849-0

Article  PubMed  Google Scholar 

Fujiwara T, Liu M, Chino N (2003) Effect of pedaling exercise on the hemiplegic lower limb. Am J Phys Med Rehabil 82:357–363. https://doi.org/10.1097/01.PHM.0000064722.01940.E4

Article  PubMed  Google Scholar 

Fujiwara T et al (2005) Pedaling exercise for neuromuscular re-education: a review. Crit Reviews™ Phys Rehabilitation Med 17. https://doi.org/10.1615/CritRevPhysRehabilMed.v17.i3.10

Fung J, Barbeau H (1989) A dynamic EMG profile index to quantify muscular activation disorder in spastic paretic gait. Electroencephalogr Clin Neurophysiol 73:233–244. https://doi.org/10.1016/0013-4694(89)90124-7

Article  CAS  PubMed  Google Scholar 

Gerasimenko YP et al (2015) Noninvasive reactivation of Motor Descending Control after paralysis. J Neurotrauma 32:1968–1980. https://doi.org/10.1089/neu.2015.4008

Article  PubMed  PubMed Central  Google Scholar 

Hofstoetter US et al (2015) Augmentation of Voluntary locomotor activity by Transcutaneous Spinal Cord Stimulation in motor-incomplete spinal cord-injured individuals. Artif Organs 39:E176–E186. https://doi.org/10.1111/aor.12615

Article  PubMed  Google Scholar 

Koseki T et al (2023) Combined neuromuscular electrical stimulation and transcutaneous spinal direct current stimulation increases motor cortical plasticity in healthy humans. Front NeuroSci 16. https://doi.org/10.3389/fnins.2022.1034451

Ladenbauer J et al (2010) Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 18:637–645. https://doi.org/10.1109/TNSRE.2010.2054112

Article  PubMed  Google Scholar 

Larsen B, Voigt M (2006) Quadriceps H-reflex modulation during pedaling. J Neurophysiol 96:197–208. https://doi.org/10.1152/jn.00149.2005

Article  PubMed  Google Scholar 

Matsuyama K et al (2004) Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res 143:239–249. https://doi.org/10.1016/s0079-6123(03)43024-0

Article  PubMed  Google Scholar 

McHugh LV et al (2020) Feasibility and utility of transcutaneous spinal cord stimulation combined with walking-based therapy for people with motor incomplete spinal cord injury. Spinal Cord Ser Cases 6:104. https://doi.org/10.1038/s41394-020-00359-1

Article  PubMed  PubMed Central  Google Scholar 

McIlroy WE, Collins DF, Brooke JD (1992) Movement features and H-reflex modulation. II. Passive rotation, movement velocity and single leg movement. Brain Res 582:85–93. https://doi.org/10.1016/0006-8993(92)90320-9

Article  CAS  PubMed  Google Scholar 

Megía-García Á et al (2020) Transcutaneous Spinal Cord Stimulation enhances Quadriceps Motor evoked potential in healthy participants: a double-blind randomized controlled study. J Clin Med 9. https://doi.org/10.3390/jcm9103275

Meyer C et al (2020) Immediate effects of Transcutaneous Spinal Cord Stimulation on motor function in Chronic, Sensorimotor Incomplete spinal cord Injury. J Clin Med 11. https://doi.org/10.3390/jcm9113541

Milosevic M et al (2019) Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors. Exp Brain Res 237:467–476. https://doi.org/10.1007/s00221-018-5437-6

Article  PubMed  Google Scholar 

Morita H et al (2001) Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain 124:826–837. https://doi.org/10.1093/brain/124.4.826

Article  CAS  PubMed  Google Scholar 

Mundra A et al (2023) Spinal cord stimulation for spinal cord injury - where do we stand? A narrative review. J Clin Orthop Trauma 43:102210. https://doi.org/10.1016/j.jcot.2023.102210

Article  PubMed  PubMed Central  Google Scholar 

Obata H et al (2018) Short-term effects of electrical nerve stimulation on spinal reciprocal inhibition depend on gait phase during passive stepping. J Electromyogr Kinesiol 38:151–154. https://doi.org/10.1016/j.jelekin.2017.12.007

Article  PubMed  Google Scholar 

Okuma Y, Lee RG (1996) Reciprocal inhibition in hemiplegia: correlation with clinical features and recovery. Can J Neurol Sci 23:15–23. https://doi.org/10.1017/s0317167100039135

Article  CAS  PubMed  Google Scholar 

Okuma Y, Mizuno Y, Lee RG (2002) Reciprocal Ia inhibition in patients with asymmetric spinal spasticity. Clin Neurophysiol 113:292–297. https://doi.org/10.1016/s1388-2457(02)00004-4

Article  PubMed  Google Scholar 

Perez MA, Field-Fote EC, Floeter MK (2003) Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans. J Neurosci 23:2014–2018. https://doi.org/10.1523/JNEUROSCI.23-06-02014.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pyndt HS, Laursen M, Nielsen JB (2003) Changes in reciprocal inhibition across the ankle joint with changes in external load and pedaling rate during bicycling. J Neurophysiol 90:3168–3177. https://doi.org/10.1152/jn.00444.2003

Article  CAS  PubMed  Google Scholar 

Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37. https://doi.org/10.1007/s002210050933

Article  CAS  PubMed  Google Scholar 

Saito A et al (2019) Repeatability of spi

留言 (0)

沒有登入
gif