Adams, S. H. (2011). Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Advances in Nutrition, 2(6), 445–456.
Article CAS PubMed PubMed Central Google Scholar
Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., ... & Smith Jr, S. C. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 120(16), 1640–1645.
Anderson, G. & Maes, M. (2013). Metabolic syndrome, Alzheimer disease, schizophrenia, and depression: Role for leptin, melatonin, kynurenine pathways, and neuropeptides. Metabolic Syndrome and Neurological Disorders, 235–248. https://doi.org/10.1002/9781118395318.ch13
Ardiansyah, S., Shirakawa, H., Inagawa, Y., Koseki, T., & Komai, M. (2011). Regulation of blood pressure and glucose metabolism induced by L-tryptophan in stroke-prone spontaneously hypertensive rats. Nutrition & Metabolism (London), 8, 45.
Bakkour, A., Morris, J. C., & Dickerson, B. C. (2009). The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia. Neurology, 72(12), 1048–1055.
Article PubMed PubMed Central Google Scholar
Bala, C. G., Rusu, A., Ciobanu, D., Bucsa, C., & Roman, G. (2021). Amino acid signature of oxidative stress in patients with type 2 diabetes: Targeted exploratory metabolomic research. Antioxidants, 10(4), 610.
Article CAS PubMed PubMed Central Google Scholar
Balkau, B., & Charles, M. A. (1999). Comment on the provisional report from the WHO consultation. Diabetic Medicine, 16(5), 442–443.
Article CAS PubMed Google Scholar
Berry, A. S., Shah, V. D., Baker, S. L., Vogel, J. W., O'Neil, J. P., Janabi, M., ... & Jagust, W. J. (2016). Aging affects dopaminergic neural mechanisms of cognitive flexibility. Journal of Neuroscience, 36(50), 12559–12569.
Booij, L., Merens, W., Markus, C. R., & Van der Does, A. W. (2006). Diet rich in α-lactalbumin improves memory in unmedicated recovered depressed patients and matched controls. Journal of Psychopharmacology, 20(4), 526–535.
Article CAS PubMed Google Scholar
Chen, T., Zheng, X., Ma, X., Bao, Y., Ni, Y., Hu, C., ... & Jia, W. (2016). Tryptophan predicts the risk for future type 2 diabetes. PloS One, 11(9), e0162192.
Cho, J., Seo, S., Kim, W. R., Kim, C., & Noh, Y. (2021). Association between visceral fat and brain cortical thickness in the elderly: A neuroimaging study. Frontiers in Aging Neuroscience, 13, 694629.
Article PubMed PubMed Central Google Scholar
Civen, M., & Brown, C. B. (1971). Enzymatic regulation of the tyrosine metabolic pathway in rat liver. Life Sciences II, 10(23), 1365–1373.
Colzato, L. S., Jongkees, B. J., Sellaro, R., & Hommel, B. (2013). Working memory reloaded: Tyrosine repletes updating in the N-back task. Frontiers in Behavioral Neuroscience, 7, 200.
Article PubMed PubMed Central Google Scholar
Colzato, L. S., Jongkees, B. J., Sellaro, R., van den Wildenberg, W. P., & Hommel, B. (2014). Eating to stop: Tyrosine supplementation enhances inhibitory control but not response execution. Neuropsychologia, 62, 398–402.
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I Segmentation and Surface Reconstruction. Neuroimage, 9(2), 179–194.
Article CAS PubMed Google Scholar
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., ... & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Dickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., Desikan, R., ... & Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39(1), 10–18.
Dufouil, C., de Kersaint–Gilly, A., Besancon, V., Levy, C., Auffray, E., Brunnereau, L., ... & Tzourio, C. (2001). Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology, 56(7), 921–926.
Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. Lancet, 365(9468), 1415–1428.
Article CAS PubMed Google Scholar
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055.
Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80.
Article CAS PubMed Google Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
Article CAS PubMed Google Scholar
Friedman, J. I., Tang, C. Y., de Haas, H. J., Changchien, L., Goliasch, G., Dabas, P., Wang, V., Fayad, Z. A., Fuster, V., & Narula, J. (2014). Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients. JACC: Cardiovascular Imaging, 7(10), 1039–1053.
Geisler, S., Mayersbach, P., Becker, K., Schennach, H., Fuchs, D., & Gostner, J. M. (2015). Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines, 26(1), 31–36.
Hassenstab, J. J., Sweet, L. H., Del Parigi, A., McCaffery, J. M., Haley, A. P., Demos, K. E., ... & Wing, R. R. (2012). Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: a preliminary MRI study. Psychiatry Research: Neuroimaging, 202(1), 77–79.
Jagust, W., Harvey, D., Mungas, D., & Haan, M. (2005). Central obesity and the aging brain. Archives of Neurology, 62(10), 1545–1548.
Kaur, S., Gonzales, M. M., Strasser, B., Pasha, E., McNeely, J., Tanaka, H., & Haley, A. P. (2015). Central adiposity and cortical thickness in midlife. Psychosomatic Medicine, 77(6), 671–678.
Article CAS PubMed Google Scholar
Leritz, E. C., Salat, D. H., Williams, V. J., Schnyer, D. M., Rudolph, J. L., Lipsitz, L., ... & Milberg, W. P. (2011). Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults. Neuroimage, 54(4), 2659–2671.
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., ... & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 396(10248), 413–446.
Lu, R., Aziz, N. A., Diers, K., Stöcker, T., Reuter, M., & Breteler, M. M. (2021). Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Human Brain Mapping, 42(8), 2434–2444.
Article PubMed PubMed Central Google Scholar
Marebwa, B. K., Adams, R. J., Magwood, G. S., Basilakos, A., Mueller, M., Rorden, C., Fridriksson, J., & Bonilha, L. (2018). Cardiovascular risk factors and brain health: Impact on long-range cortical connections and cognitive performance. Journal of the American Heart Association, 7(23), e010054.
Article PubMed PubMed Central Google Scholar
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114(2), 376.
Article CAS PubMed Google Scholar
McIntosh, E. C., Jacobson, A., Kemmotsu, N., Pongpipat, E., Green, E., Haase, L., & Murphy, C. (2017). Does medial temporal lobe thickness mediate the association between risk factor burden and memory performance in middle-aged or older adults with metabolic syndrome? Neuroscience Letters, 636, 225–232.
Article CAS PubMed Google Scholar
Murphy, S. E., Longhitano, C., Ayres, R. E., Cowen, P. J., & Harmer, C. J. (2006). Tryptophan supplementation induces a positive bias in the processing of emotional material in healthy female volunteers. Psychopharmacology (Berl), 187, 121–130.
Article CAS PubMed Google Scholar
Neurauter, G., Scholl-Bürgi, S., Haara, A., Geisler, S., Mayersbach, P., Schennach, H., & Fuchs, D. (2013). Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clinical Biochemistry, 46(18), 1848–1851.
Article CAS PubMed Google Scholar
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 2023
Reaven, G. M. (1997). Role of insulin resistance in human disease. Nutrition, 1(13), 65.
Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196.
Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3), 1060–1075.
Ségonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.
Segura, B., Jurado, M. Á., Freixenet, N., Albuin, C., Muniesa, J., & Junqué, C. (2009a). Mental slowness and executive dysfunctions in patients with metabolic syndrome. Neuroscience Letters, 462(1), 49–53.
留言 (0)