Hereditary thrombophilia as a possible risk factor for severe disease in COVID-19: a case series

Rashedi J, Mahdavi Poor B, Asgharzadeh V, et al. Risk factors for COVID-19. Infez Med. 2020;28(4):469–74.

CAS  PubMed  Google Scholar 

People with certain medical conditions. In: COVID-19. Centers for Disease Control and Prevention. Published 2020. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html. Accessed 5 Dec 2023.

‌Kichloo A, Dettloff K, Aljadah M, et al. COVID-19 and hypercoagulability: a review. Clin Appl Thromb Hemost. 2020. https://doi.org/10.1177/1076029620962853.

Article  PubMed  PubMed Central  Google Scholar 

Cheng NM, Chan YC, Cheng SW. COVID-19 related thrombosis: a mini-review. Phlebology. 2022;37(5):326–37. https://doi.org/10.1177/02683555211052170.

Article  PubMed  PubMed Central  Google Scholar 

Zuin M, Barco S, Giannakoulas G, et al. Risk of venous thromboembolic events after COVID-19 infection: a systematic review and meta-analysis. J Thromb Thrombolysis. 2023;55(3):490–8. https://doi.org/10.1007/s11239-022-02766-7.

Article  PubMed  PubMed Central  Google Scholar 

Massoud GP, Hazimeh DH, Amin G, et al. Risk of thromboembolic events in non-hospitalized COVID-19 patients: a systematic review. Eur J Pharmacol. 2023;941:175501. https://doi.org/10.1016/j.ejphar.2023.175501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wheeler HB, Anderson FA Jr, Cardullo PA, Patwardhan NA, Jian-Ming L, Cutler BS. Suspected deep vein thrombosis. Management by impedance plethysmography. Arch Surg. 1982;117(9):1206–9. https://doi.org/10.1001/archsurg.1982.01380330064015.

Article  CAS  PubMed  Google Scholar 

Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9–16. https://doi.org/10.1161/01.CIR.0000078469.07362.E6.

Article  PubMed  Google Scholar 

Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020. https://doi.org/10.1016/j.jcv.2020.104362.

Article  PubMed  PubMed Central  Google Scholar 

Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020. https://doi.org/10.1515/cclm-2020-0188.

Article  PubMed  Google Scholar 

Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management [published correction appears in Thromb Res. 2020]. Thromb Res. 2020. https://doi.org/10.1016/j.thromres.2020.06.029.

Article  PubMed  PubMed Central  Google Scholar 

Ali EW, Ibrahim IK. Multi-factorial mechanism behind COVID-19 related thrombosis. Med Arch. 2022;76(1):62–5. https://doi.org/10.5455/medarh.2022.76.62-65.

Article  PubMed  PubMed Central  Google Scholar 

Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. https://doi.org/10.1002/ajh.25982.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar M, Madabhavi IV, Quy PN, Govindagoudar MB. COVID-19 and coagulopathy. Clin Respir J. 2021;15(12):1259–74. https://doi.org/10.1111/crj.13438.

Article  CAS  PubMed  Google Scholar 

Baglin T. Inherited and acquired risk factors for venous thromboembolism. Semin Respir Crit Care Med. 2012. https://doi.org/10.1055/s-0032-1311791.

Article  PubMed  Google Scholar 

Zhang Q, Jin Y, Li X, et al. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism - a meta-analysis and systematic review. Vasa. 2020. https://doi.org/10.1024/0301-1526/a000839.

Article  PubMed  Google Scholar 

Nikolopoulos GK, Bagos PG, Tsangaris I, et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a mendelian randomization meta-analysis. Clin Chem Lab Med. 2014. https://doi.org/10.1515/cclm-2013-1124.

Article  PubMed  Google Scholar 

Liu Y, Cheng J, Guo X, et al. The roles of PAI-1 gene polymorphisms in atherosclerotic diseases: a systematic review and meta-analysis involving 149,908 subjects. Gene. 2018. https://doi.org/10.1016/j.gene.2018.06.040.

Article  PubMed  PubMed Central  Google Scholar 

Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-Carbon cycle, and Cardiovascular risks. Nutrients. 2021. https://doi.org/10.3390/nu13124562.

Article  PubMed  PubMed Central  Google Scholar 

Dean L. Methylenetetrahydrofolate Reductase Deficiency. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, eds. Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US); March 8, 2012.

Nappo F, De Rosa N, Marfella R, et al. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA. 1999. https://doi.org/10.1001/jama.281.22.2113.

Article  PubMed  Google Scholar 

Lijfering WM, Veeger NJ, Brouwer JL, van der Meer J. The risk of venous and arterial thrombosis in hyperhomocysteinemic subjects may be a result of elevated factor VIII levels. Haematologica. 2007. https://doi.org/10.3324/haematol.11611.

Article  PubMed  Google Scholar 

Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD006612.pub5.

Article  PubMed  PubMed Central  Google Scholar 

Ray JG. Meta-analysis of hyperhomocysteinemia as a risk factor for venous thromboembolic disease. Arch Intern Med. 1998. https://doi.org/10.1001/archinte.158.19.2101.

Article  PubMed  Google Scholar 

Ospina-Romero M, Cannegieter SC, den Heijer M, Doggen CJM, Rosendaal FR, Lijfering WM. Hyperhomocysteinemia and risk of first venous thrombosis: the influence of (unmeasured) confounding factors. Am J Epidemiol. 2018. https://doi.org/10.1093/aje/kwy004.

Article  PubMed  Google Scholar 

Alizadeh S, Djafarian K, Moradi S, Shab-Bidar S. C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: a systematic review and meta-analysis. Int J Cardiol. 2016. https://doi.org/10.1016/j.ijcard.2016.04.181.

Article  PubMed  Google Scholar 

Gao M, Feng N, Zhang M, Ti X, Zuo X. Meta-analysis of the relationship between methylenetetrahydrofolate reductase C677T and A1298C polymorphism and venous thromboembolism in the caucasian and Asian. Biosci Rep. 2020. https://doi.org/10.1042/BSR20200860.

Article  PubMed  PubMed Central  Google Scholar 

Simsek E, Yesilyurt A, Pinarli F, Eyerci N, Ulus AT. Combined genetic mutations have remarkable effect on deep venous thrombosis and/or pulmonary embolism occurrence. Gene. 2014. https://doi.org/10.1016/j.gene.2014.02.046.

Article  PubMed  Google Scholar 

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016. https://doi.org/10.1007/s10897-016-9956-7.

Article  PubMed  Google Scholar 

Middeldorp S, Nieuwlaat R, Baumann Kreuziger L, et al. American Society of Hematology 2023 Guidelines for Management of venous thromboembolism: Thrombophilia Testing [published online ahead of print, 2023 May 17]. Blood Adv. 2023. https://doi.org/10.1182/bloodadvances.2023010177.

Article  PubMed  PubMed Central  Google Scholar 

Badulescu OV, Sirbu PD, Filip N, et al. Hereditary Thrombophilia in the era of COVID-19. Healthc (Basel). 2022;10(6):993. https://doi.org/10.3390/healthcare10060993. Published 2022 May 27.

Article  Google Scholar 

Kovac M, Mitic G, M

留言 (0)

沒有登入
gif