Safeguarding Patients in the AI Era: Ethics at the Forefront of Pharmacovigilance

Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q Consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):310. https://doi.org/10.1186/s12911-020-01332-6.

Article  PubMed  PubMed Central  Google Scholar 

Zhou J, Chen F, Berry A, Reed M, Zhang S, Savage S. A survey on ethical principles of AI and implementations. 2020 IEEE Symposium Series on Computational Intelligence (SSCI); December 2020; Canberra (ACT): p. 3010–7. https://doi.org/10.1109/SSCI47803.2020.9308437.

Char DS, Shah NH, Magnus D. Implementing machine learning in health care: addressing ethical challenges. N Engl J Med. 2018;378(11):981–3. https://doi.org/10.1056/NEJMp1714229.

Article  PubMed  PubMed Central  Google Scholar 

Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–21. https://doi.org/10.1038/clpt.2012.50.

Article  CAS  PubMed  Google Scholar 

Schmider J, Kumar K, LaForest C, Swankoski B, Naim K, Caubel PM. Innovation in pharmacovigilance: use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther. 2019;105(4):954–61. https://doi.org/10.1002/cpt.1255.

Article  PubMed  Google Scholar 

Lewis DJ, McCallum JF. Utilizing advanced technologies to augment pharmacovigilance systems: challenges and opportunities. Ther Innov Regul Sci. 2020;54(4):888–99. https://doi.org/10.1007/s43441-019-00023-3.

Article  PubMed  Google Scholar 

Crisafulli S, Ciccimarra F, Bellitto C, Carollo M, Carrara E, Stagi L, et al. Artificial intelligence for optimizing benefits and minimizing risks of pharmacological therapies: challenges and opportunities. Front Drug Saf Regul. 2024;4:1356405. https://doi.org/10.3389/fdsfr.2024.1356405.

Article  Google Scholar 

Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics. 2015;16(1):365. https://doi.org/10.1186/s12859-015-0774-y.

Article  PubMed  PubMed Central  Google Scholar 

Das P, Mazumder DH. An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artif Intell Rev. 2023;2:1–28. https://doi.org/10.21203/rs.3.rs-2106875/v1.

Article  CAS  Google Scholar 

Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 2017;18(1):18. https://doi.org/10.1186/s12859-016-1415-9.

Article  CAS  Google Scholar 

Fellowes L. 2024 MHRA GPvP Symposium: using AI in pharmacovigilance. Mar 2024. Available from: https://news.hyperec.com/post/2024-mhra-gpvp-symposium-using-ai-in-pharmacovigilance. [Accessed 9 Sep 2025].

Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 2022;9: 862322. https://doi.org/10.3389/fsurg.2022.862322.

Article  PubMed  PubMed Central  Google Scholar 

Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53. https://doi.org/10.1126/science.aax2342.

Article  CAS  PubMed  Google Scholar 

Bate A, Stegmann J-U. Artificial intelligence and pharmacovigilance: what is happening, what could happen and what should happen? Health Policy Technol. 2023;12(2): 100743. https://doi.org/10.1016/j.hlpt.2023.100743.

Article  Google Scholar 

Liang L, Jifa H, Sun G, Hong N, Wu G, He Y, et al. Artificial intelligence-based pharmacovigilance in the setting of limited resources. Drug Saf. 2022;45(5):511–9. https://doi.org/10.1007/s40264-022-01170-7.

Article  PubMed  PubMed Central  Google Scholar 

Kaissis GA, Makowski MR, Rücker D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2(6):305–11. https://doi.org/10.1038/s42256-020-0186-1.

Article  Google Scholar 

Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Health Technol. 2017;7(4):351–67. https://doi.org/10.1007/s12553-017-0179-1.

Article  Google Scholar 

Fletcher RR, Nakeshimana A, Olubeko O. Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in global health. Front Artif Intell. 2021;3: 561802. https://doi.org/10.3389/frai.2020.561802.

Article  PubMed  PubMed Central  Google Scholar 

Lysaght T, Lim HY, Xafis V, Ngiam KY. AI-assisted decision-making in healthcare: the application of an ethics framework for big data in health and research. Asian Bioeth Rev. 2019;11(3):299–314. https://doi.org/10.1007/s41649-019-00096-0.

Article  PubMed  PubMed Central  Google Scholar 

Ross C, Swetlitz I. IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. Stat+, 25 July, 2018. Available from: https://www.statnews.com/wp-content/uploads/2018/09/IBMs-Watson-recommended-unsafe-and-incorrect-cancer-treatments-STAT.pdf. [Accessed 30 Mar 2024].

Hauben M. Artificial intelligence in pharmacovigilance: do we need explainability? Pharmacoepidemiol Drug Saf. 2022;31(12):1311–6. https://doi.org/10.1002/pds.5501.

Article  PubMed  Google Scholar 

Pinheiro LC, Kurz X. Artificial intelligence in pharmacovigilance: a regulatory perspective on explainability. Pharmacoepidemiol Drug Saf. 2022;31(12):1308–10. https://doi.org/10.1002/pds.5524.

Article  PubMed  Google Scholar 

Drukker K, Chen W, Gichoya JW, Gruszauskas NP, Kalpathy-Cramer J, Koyejo S, et al. Toward fairness in artificial intelligence for medical image analysis: identification and mitigation of potential biases in the roadmap from data collection to model deployment. J Med Imaging. 2023;10:6. https://doi.org/10.1117/1.JMI.10.6.061104.

Article  Google Scholar 

Jäger S, Allhorn A, Bießmann F. A benchmark for data imputation methods. Front Big Data. 2021;4: 693674. https://doi.org/10.3389/fdata.2021.693674.

Article  PubMed  PubMed Central  Google Scholar 

Vokinger KN, Feuerriegel S, Kesselheim AS. Mitigating bias in machine learning for medicine. Commun Med. 2021;1(1):25. https://doi.org/10.1038/s43856-021-00028-w.

Article  PubMed  PubMed Central  Google Scholar 

Liu M, Ning Y, Teixayavong S, Mertens M, Xu J, Ting DSW. A translational perspective towards clinical AI fairness. Npj Digit Med. 2023;6(1):172. https://doi.org/10.1038/s41746-023-00918-4.

Article  PubMed  PubMed Central  Google Scholar 

Lee S, Kim S, Lee J, Kim J-Y, Song M-H, Lee S. Explainable artificial intelligence for patient safety: a review of application in pharmacovigilance. IEEE Access. 2023;11:50830–40. https://doi.org/10.1109/ACCESS.2023.3271635.

Article  Google Scholar 

World Health Organization. WHO calls for safe and ethical AI for health. 16 May, 2023. Available from: https://www.who.int/news/item/16-05-2023-who-calls-for-safe-and-ethical-ai-for-health. [Accessed 9 Mar 2024].

World Health Organization. Ethics and governance of artificial intelligence for health: guidance on large multi-modal models. Geneva, Switzerland, 2024. Available from: https://www.who.int/publications/i/item/9789240084759. [Accessed 30 May 2024].

European Medicines Agency. Multi-annual AI workplan2023-2028 HMA-EMA Big Data Steering Group. November 2023. Available from: https://www.ema.europa.eu/en/documents/work-programme/multi-annual-artificial-intelligence-workplan-2023-2028-hma-ema-joint-big-data-steering-group_en.pdf. [Accessed 12 Mar 2024].

European Commission. Independent high-level expert group on artificial intelligence: a definition of AI: main capabilities and disciplines. April 2019. Available from: https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai. [Accessed 12 Mar 2024].

US FDA. Proposed regulatory framework for modifications to artificial intelligence machine learning (AI/ML)-based software as a medical device (SaMD): discussion paper. Available from: https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf. [Accessed 14 Mar 2024].

US Food and Drug Administration. Using artificial intelligence & machine learning in the development of drug & biological products: discussion paper. May 2023. Available from: https://www.fda.gov/media/167973/download. [Accessed 12 Mar 2024].

US FDA. Artificial intelligence and medical products: how CBER, CDER, CDRH, and OCP are working together. 2024. Available from: https://www.fda.gov/media/177030/download. [Accessed 30 May 2024].

US FDA. Information visualization platform (InfoViP): CDER’s new artificial intelligence safety surveillance tool. Available from: https://www.fda.gov/drugs/cder-conversations/information-visualization-platform-infovip-cders-new-artificial-intelligence-safety-surveillance. [Accessed 12 Mar 2024].

Ball R, Dal Pan G. Artificial intelligence’ for pharmacovigilance: ready for prime time? Drug Saf. 2022;45(5):429–38. https://doi.org/10.1007/s40264-022-01157-4.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif