Sociodemographic biases in a commercial AI model for intracranial hemorrhage detection

Safatli D, Günther A, Schlattmann P et al (2016) Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg Neurol Int 7:510. https://doi.org/10.4103/2152-7806.187493

Article  Google Scholar 

Macellari F, Paciaroni M, Agnelli G, Caso V (2014) Neuroimaging in Intracerebral Hemorrhage. Stroke 45:903–908. https://doi.org/10.1161/STROKEAHA.113.003701

Article  PubMed  Google Scholar 

Powers WJ, Rabinstein AA, Ackerson T et al (2019) Guidelines for the early management of patients with Acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of Acute ischemic stroke: a Guideline for Healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50:e344–e418. https://doi.org/10.1161/STR.0000000000000211

Article  PubMed  Google Scholar 

Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3:118. https://doi.org/10.1038/s41746-020-00324-0

Article  PubMed  PubMed Central  Google Scholar 

Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62:335–340. https://doi.org/10.1007/s00234-019-02330-w

Article  PubMed  Google Scholar 

Zia A, Fletcher C, Bigwood S et al (2022) Retrospective analysis and prospective validation of an AI-based software for intracranial haemorrhage detection at a high-volume trauma centre. Sci Rep 12:19885. https://doi.org/10.1038/s41598-022-24504-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beheshtian E, Putman K, Santomartino SM et al (2023) Generalizability and Bias in a Deep Learning Pediatric Bone Age Prediction Model using hand radiographs. Radiology 306:e220505. https://doi.org/10.1148/radiol.220505

Article  PubMed  Google Scholar 

Juhn YJ, Ryu E, Wi C-I et al (2022) Assessing socioeconomic bias in machine learning algorithms in health care: a case study of the HOUSES index. J Am Med Inf Assoc 29:1142–1151. https://doi.org/10.1093/jamia/ocac052

Article  Google Scholar 

Lahti A-M, Nätynki M, Huhtakangas J et al (2021) Long-term survival after primary intracerebral hemorrhage: a population-based case–control study spanning a quarter of a century. Eur J Neurol 28:3663–3669. https://doi.org/10.1111/ene.14988

Article  PubMed  Google Scholar 

Craen A, Mangal R, Stead TG, Ganti L Gender differences in outcomes after non-traumatic intracerebral hemorrhage. Cureus 11:e5818. https://doi.org/10.7759/cureus.5818

Leasure AC, King ZA, Torres-Lopez V et al (2020) Racial/ethnic disparities in the risk of intracerebral hemorrhage recurrence. Neurology 94:e314–e322. https://doi.org/10.1212/WNL.0000000000008737

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Kitlen E, Torres-Lopez V et al (2023) Neighborhood disadvantage and outcomes following intracerebral hemorrhage (S29.002). https://doi.org/10.1212/WNL.0000000000203392. Neurology 100:

Voter AF, Meram E, Garrett JW, Yu J-PJ (2021) Diagnostic accuracy and failure Mode Analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18:1143–1152. https://doi.org/10.1016/j.jacr.2021.03.005

Article  PubMed  PubMed Central  Google Scholar 

Yg C, Mm M, Bd P (2019) Prescreening for Intracranial Hemorrhage on CT Head scans with an AI-Based Radiology Workflow Triage Tool: an Accuracy Study. J Med Diagn Methods 8:1–5

Google Scholar 

U.S (2020) Centers for Medicare & Medicaid Services Age and Sex Estimates in the National Health Expenditure accounts. Definitions, Sources, and Methods

Jensen E, Jones N, Orozco K et al (2021) Measuring Racial and Ethnic Diversity for the 2020 Census. In: Census.gov. https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-diversity-2020-census.html. Accessed 3 Nov 2023

Barber LE, Zirpoli GR, Cozier YC et al (2021) Neighborhood disadvantage and individual-level life stressors in relation to breast cancer incidence in US black women. Breast Cancer Res 23:108. https://doi.org/10.1186/s13058-021-01483-y

Article  PubMed  PubMed Central  Google Scholar 

Ginat D (2021) Implementation of Machine Learning Software on the Radiology Worklist decreases scan View Delay for the detection of intracranial hemorrhage on CT. Brain Sci 11:832. https://doi.org/10.3390/brainsci11070832

Article  PubMed  PubMed Central  Google Scholar 

Seyyed-Kalantari L, Zhang H, McDermott MBA et al (2021) Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med 27:2176–2182. https://doi.org/10.1038/s41591-021-01595-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bako AT, Pan A, Potter T et al (2022) Contemporary trends in the Nationwide incidence of primary intracerebral hemorrhage. Stroke 53:e70–e74. https://doi.org/10.1161/STROKEAHA.121.037332

Article  PubMed  Google Scholar 

Lioutas V-A, Beiser AS, Aparicio HJ et al (2020) Assessment of incidence and risk factors of Intracerebral Hemorrhage among participants in the Framingham Heart Study between 1948 and 2016. JAMA Neurol 77:1252–1260. https://doi.org/10.1001/jamaneurol.2020.1512

Article  PubMed  PubMed Central  Google Scholar 

Gokhale S, Caplan LR, James ML (2015) Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage. Stroke 46:886–892. https://doi.org/10.1161/STROKEAHA.114.007682

Article  PubMed  Google Scholar 

Zhang S, Shu Y, Li W et al (2022) High haemoglobin levels and mortality in males with intracerebral haemorrhage: a retrospective cohort study. BMJ Open 12:e048108. https://doi.org/10.1136/bmjopen-2020-048108

Article  PubMed  PubMed Central  Google Scholar 

Bruni SG, Patafio FM, Dufton JA et al (2013) The assessment of anemia from attenuation values of cranial venous drainage on unenhanced computed tomography of the head. Can Assoc Radiol J 64:46–50. https://doi.org/10.1016/j.carj.2011.08.005

Article  PubMed  Google Scholar 

Li P, Cheng Z, yan, Liu G (2020) lin Availability Bias Causes Misdiagnoses by Physicians: Direct Evidence from a Randomized Controlled Trial. Intern Med 59:3141–3146. https://doi.org/10.2169/internalmedicine.4664-20

Mattocks K, Casares J, Brown A et al (2020) Women veterans’ experiences with perceived gender Bias in U.S. Department of Veterans Affairs Specialty Care. Womens Health Issues 30:113–119. https://doi.org/10.1016/j.whi.2019.10.003

Article  PubMed  Google Scholar 

Yang J, Soltan AAS, Eyre DW, Clifton DA (2023) Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning. Nat Mach Intell 5:884–894. https://doi.org/10.1038/s42256-023-00697-3

Article  PubMed  PubMed Central  Google Scholar 

Seyyed-Kalantari L, Liu G, McDermott M et al (2021) CheXclusion: Fairness gaps in deep chest X-ray classifiers. Pac Symp Biocomput 26:232–243

PubMed  Google Scholar 

Gichoya JW, Banerjee I, Bhimireddy AR et al (2022) AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4:e406–e414. https://doi.org/10.1016/S2589-7500(22)00063-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hobson C, Dortch J, Ozrazgat Baslanti T et al (2014) Insurance status is Associated with Treatment Allocation and outcomes after Subarachnoid Hemorrhage. PLoS ONE 9:e105124. https://doi.org/10.1371/journal.pone.0105124

Article  PubMed  PubMed Central  CAS  Google Scholar 

Uscher-Pines L, Pines J, Kellermann A et al (2013) Deciding to visit the Emergency Department for non-urgent conditions: a systematic review of the literature. Am J Manag Care 19:47–59

PubMed  PubMed Central  Google Scholar 

Bhayana R, Vermeulen MJ, Li Q et al (2014) Socioeconomic status and the use of computed tomography in the emergency department. CJEM 16:288–295. https://doi.org/10.2310/8000.2013.131102

Article  PubMed  Google Scholar 

Jencks SF, Schuster A, Dougherty GB et al (2019) Safety-Net hospitals, Neighborhood Disadvantage, and readmissions under Maryland’s all-payer program: an observational study. Ann Intern Med 171:91–98. https://doi.org/10.7326/M16-2671

Article  PubMed  PubMed Central  Google Scholar 

Neighborhood Atlas - Changelog https://www.neighborhoodatlas.medicine.wisc.edu/changelog. Accessed 3 Nov 2023

Sabottke CF, Spieler BM (2020) The Effect of Image Resolution on Deep Learning in Radiography. Radiol Artif Intell 2:e190015. https://doi.org/10.1148/ryai.2019190015

留言 (0)

沒有登入
gif