CDK4 is co-amplified with either TP53 promoter gene fusions or MDM2 through distinct mechanisms in osteosarcoma

Gianferante, D. M., Mirabello, L. & Savage, S. A. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat. Rev. Endocrinol. 13, 480–491 (2017).

Article  CAS  PubMed  Google Scholar 

Baumhoer, D. et al. Osteosarcoma. In: WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. 5th ed. 403–409 (International Agency for Research on Cancer, 2020).

Beird, H. C. et al. Osteosarcoma. Nat. Rev. Dis. Prim. 8, 77 (2022).

Article  PubMed  Google Scholar 

Yoshida, A., Bredella, M. A., Gambarotti, M. & Sumathi, V. P. Low-grade central osteosarcoma. In: WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. 5th ed. 400–402 (International Agency for Research on Cancer, 2020).

Wang, J., Nord, K. H., O’Donnell, P. G. & Yoshida, A. Parosteal osteosarcoma. In: WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours. 5th ed. 410-413 (International Agency for Research on Cancer, 2020).

Bertoni, F., Bacchini, P., Staals, E. L. & Davidovitz, P. Dedifferentiated parosteal osteosarcoma: the experience of the Rizzoli Institute. Cancer 103, 2373–2382 (2005).

Article  PubMed  Google Scholar 

Choong, P. F. et al. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clin. Orthop. Relat. Res. 322, 198–206 (1996).

Article  Google Scholar 

Gisselsson, D. et al. Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes. Chromosomes Cancer 33, 133–140 (2002).

Article  CAS  PubMed  Google Scholar 

Heidenblad, M. et al. Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 25, 7106–7116 (2006).

Article  CAS  PubMed  Google Scholar 

Szymanska, J. et al. Ring chromosomes in parosteal osteosarcoma contain sequences from 12q13-15: a combined cytogenetic and comparative genomic hybridization study. Genes. Chromosomes Cancer 16, 31–34 (1996).

Article  CAS  PubMed  Google Scholar 

Mejia-Guerrero, S. et al. Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes. Chromosomes Cancer 49, 518–525 (2010).

Article  CAS  PubMed  Google Scholar 

Dujardin, F. et al. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod. Pathol. 24, 624–637 (2011).

Article  CAS  PubMed  Google Scholar 

Salinas-Souza, C. et al. GNAS mutations are not detected in parosteal and low-grade central osteosarcomas. Mod. Pathol. 28, 1336–1342 (2015).

Article  CAS  PubMed  Google Scholar 

Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell. Rep. 7, 104–112 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lorenz, S. et al. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget 7, 5273–5288 (2016).

Article  PubMed  Google Scholar 

Saba, K. H. et al. Disruption of the TP53 locus in osteosarcoma leads to TP53 promoter gene fusions and restoration of parts of the TP53 signalling pathway. J. Pathol. 262, 147–160 (2024).

Article  CAS  PubMed  Google Scholar 

Smida, J. et al. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int. J. Cancer 141, 816–828 (2017).

Article  CAS  PubMed  Google Scholar 

Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

Article  CAS  PubMed  Google Scholar 

Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell. 26, 653–667 (2014).

Article  CAS  PubMed  Google Scholar 

Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl Acad. Sci. USA 97, 5357–5362 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

Article  CAS  PubMed  Google Scholar 

Difilippo, V. et al. Osteosarcomas with few chromosomal alterations or adult onset are genetically heterogeneous. Lab. Invest. 104, 100283 (2024).

Article  PubMed  Google Scholar 

Mertens, F. et al. Cytogenetic findings in 33 osteosarcomas. Int. J. Cancer 55, 44–50 (1993).

Article  CAS  PubMed  Google Scholar 

Nord, K. H. et al. Integrative genome and transcriptome analyses reveal two distinct types of ring chromosome in soft tissue sarcomas. Hum. Mol. Genet. 23, 878–888 (2014).

Article  CAS  PubMed  Google Scholar 

Pedeutour, F. et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes. Chromosomes Cancer 24, 30–41 (1999).

Article  CAS  PubMed  Google Scholar 

Pedeutour, F. et al. Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes. Chromosomes Cancer 10, 85–94 (1994).

Article  CAS  PubMed  Google Scholar 

Wang, X. et al. High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Genes. Chromosomes Cancer 50, 849–858 (2011).

Article  CAS  PubMed  Google Scholar 

Sydow, S. et al. MDM2 amplification in rod-shaped chromosomes provides clues to early stages of circularized gene amplification in liposarcoma. Commun. Biol. 7, 606 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribi, S. et al. TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome. Oncotarget 6, 7727–7740 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Gamberi, G. et al. Analysis of 12q13-15 genes in parosteal osteosarcoma. Clin. Orthop. Relat. Res. 377, 195–204 (2000).

Article  Google Scholar 

Meltzer, P. S. et al. Identification and cloning of a novel amplified DNA sequence in human malignant fibrous histiocytoma derived from a region of chromosome 12 frequently rearranged in soft tissue tumors. Cell. Growth Differ. 2, 495–501 (1991).

CAS  PubMed  Google Scholar 

Nilbert, M., Rydholm, A., Willén, H., Mitelman, F. & Mandahl, N. MDM2 gene amplification correlates with ring chromosome in soft tissue tumors. Genes. Chromosomes Cancer 9, 261–265 (1994).

Article  CAS  PubMed  Google Scholar 

Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).

留言 (0)

沒有登入
gif