Kaempferol attenuates cyclosporine-induced renal tubular injury via inhibiting the ROS-ASK1-MAPK pathway

Abd El Salam ASG, Samaha MM, & Abd Elrazik NA (2023) Cytoprotective effects of cinnamaldehyde and adipoRon against cyclophosphamide-induced cardio-renal toxicity in rats: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 124(Pt B):111044. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37839279. https://doi.org/10.1016/j.intimp.2023.111044

Al-Rabia MW, Alfaleh MA, Asfour HZ, Alharbi WS, El-Moselhy MA, Alhakamy NA, Abdel-Naim AB (2022) 2-Methoxyestradiol TPGS micelles attenuate cyclosporine A-induced nephrotoxicity in rats through inhibition of TGF-beta1 and p-ERK1/2 axis. Antioxidants (Basel) 11(8). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36009218. https://doi.org/10.3390/antiox11081499

Alshehri AS, El-Kott AF, El-Kenawy AE, Zaki MSA, Morsy K, Ghanem RA, Abd-Ella EM (2022) The ameliorative effect of kaempferol against CdCl(2)-mediated renal damage entails activation of Nrf2 and inhibition of NF-kB. Environ Sci Pollut Res Int 29(38):57591–57602. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/35355181. https://doi.org/10.1007/s11356-022-19876-7

Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, & Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18836437. https://doi.org/10.1038/ncb1791

Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, & Lopez-Lazaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21428901. https://doi.org/10.2174/138955711795305335

Chen Y, Li N, Yang J, Li K, Tang M, Zhao X, dYuan Z (2022) PUMA overexpression dissociates thioredoxin from ASK1 to activate the JNK/BCL-2/BCL-XL pathway augmenting apoptosis in ovarian cancer. Biochim Biophys Acta Mol Basis Dis 1868(12):166553. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36122664. https://doi.org/10.1016/j.bbadis.2022.166553

Chen HC, Hou HY, Sung JM, & Shieh CC (2023) Deletion of NADPH oxidase 2 attenuates cisplatin-induced acute kidney injury through reducing ROS-induced proximal tubular cell injury and inflammation. Front Med (Lausanne), 10:1097671. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36993800. https://doi.org/10.3389/fmed.2023.1097671

Colombo D, & Ammirati E (2011) Cyclosporine in transplantation - a history of converging timelines. J Biol Regul Homeost Agents, 25(4):493–504. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22217983.

Dabeek WM, & Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11(10). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31557798. https://doi.org/10.3390/nu11102288

Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, & Daglia M (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25982933. https://doi.org/10.1016/j.phrs.2015.05.002

Dong X, Zhou S, & Nao J (2023) Kaempferol as a therapeutic agent in Alzheimer’s disease: evidence from preclinical studies. Ageing Res Rev 87:101910. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36924572. https://doi.org/10.1016/j.arr.2023.101910

Fellstrom B (2004) Cyclosporine nephrotoxicity. Transplant Proc, 36(2 Suppl):220S-223S. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15041341. https://doi.org/10.1016/j.transproceed.2004.01.028

Gonzalez-Jimenez I, Perlin DS, & Shor E (2023) Reactive oxidant species induced by antifungal drugs: identity, origins, functions, and connection to stress-induced cell death. Front Cell Infect Microbiol 13:1276406. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37900311. https://doi.org/10.3389/fcimb.2023.1276406

Helmy MW, Helmy MM, & El-Mas MM (2018) Enhanced lipoxygenase/LTD4 signaling accounts for the exaggerated hypertensive and nephrotoxic effects of cyclosporine plus indomethacin in rats. Biomed Pharmacother, 102:309–316. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29571015. https://doi.org/10.1016/j.biopha.2018.03.065

Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Estevinho LM (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24(12). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31248102. https://doi.org/10.3390/molecules24122277

Kciuk M, Gielecinska A, Budzinska A, Mojzych M, & Kontek R (2022) Metastasis and MAPK pathways. Int J Mol Sci 23(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/35409206. https://doi.org/10.3390/ijms23073847

Lee Y, Kim YJ, Kim MH, & Kwak JM (2016) MAPK Cascades in guard cell signal transduction. Front Plant Sci 7:80. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26904052. https://doi.org/10.3389/fpls.2016.00080

Li ZH, An N, Huang XJ, Yang C, Wu HL, Chen XC, Liu HF (2021) Cyclosporine A blocks autophagic flux in tubular epithelial cells by impairing TFEB-mediated lysosomal function. J Cell Mol Med 25(12):5729–5743. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33949118. https://doi.org/10.1111/jcmm.16593

Mahmoud NM, Elshazly SM, & Rezq S (2022) Geraniol protects against cyclosporine A-induced renal injury in rats: role of Wnt/beta-catenin and PPARgamma signaling pathways. Life Sci 291:120259. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34968469. https://doi.org/10.1016/j.lfs.2021.120259

McMorrow T, Gaffney MM, Slattery C, Campbell E, & Ryan MP (2005) Cyclosporine A induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. Nephrol Dial Transplant 20(10):2215–2225. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16030052. https://doi.org/10.1093/ndt/gfh967

Ogier JM, Nayagam BA, & Lockhart PJ (2020) ASK1 inhibition: a therapeutic strategy with multi-system benefits. J Mol Med (Berl) 98(3):335–348. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32060587. https://doi.org/10.1007/s00109-020-01878-y

Ortega-Trejo JA, Perez-Villalva R, Arreola-Guerra JM, Ramirez V, Sifuentes-Osornio J, & Bobadilla NA (2020) Effect of fosfomycin on cyclosporine nephrotoxicity. Antibiotics (Basel) 9(10). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33096599. https://doi.org/10.3390/antibiotics9100720

Patocka J, Nepovimova E, Kuca K, & Wu W (2021) Cyclosporine A: chemistry and toxicity - a review. Curr Med Chem 28(20):3925–3934. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33023428. https://doi.org/10.2174/0929867327666201006153202

Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache DO (2022) Kaempferol: antimicrobial properties, sources, clinical, and traditional applications. Int J Mol Sci 23(23). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36499380. https://doi.org/10.3390/ijms232315054

Ponticelli C (2005) Cyclosporine: from renal transplantation to autoimmune diseases. Ann N Y Acad Sci 1051:551–558. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16126995. https://doi.org/10.1196/annals.1361.099

Qi H, Shi H, Yan M, Zhao L, Yin Y, Tan X, Dai Y (2023) Ammonium tetrathiomolybdate relieves oxidative stress in cisplatin-induced acute kidney injury via NRF2 signaling pathway. Cell Death Discov 9(1):259. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37491360. https://doi.org/10.1038/s41420-023-01564-1

Shao YF, Tang BB, Ding YH, Fang CY, Hong L, Shao CX, He QJ (2023) Kaempferide ameliorates cisplatin-induced nephrotoxicity via inhibiting oxidative stress and inducing autophagy. Acta Pharmacol Sin 44(7):1442–1454. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36658427. https://doi.org/10.1038/s41401-023-01051-4

Shihab FS (1996) Cyclosporine nephropathy: pathophysiology and clinical impact. Semin Nephrol 16(6):536–547. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9125798.

Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25588755. https://doi.org/10.1016/j.redox.2015.01.002

Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C, Gao K (2021) Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 137:111308. https://doi.org/10.1016/j.biopha.2021.111308

Article  PubMed  CAS  Google Scholar 

Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, & Kuca K (2018) Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings. Food Chem Toxicol 118:889–907. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29960018. https://doi.org/10.1016/j.fct.2018.06.054

Wu Q, Chen J, Zheng X, Song J, Yin L, Guo H, Yang Q (2023) Kaempferol attenuates doxorubicin-induced renal tubular injury by inhibiting ROS/ASK1-mediated activation of the MAPK signaling pathway. Biomed Pharmacother 157:114087. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36481400. https://doi.org/10.1016/j.biopha.2022.114087

Yang Y, Chen Z, Zhao X, Xie H, Du L, Gao H, & Xie C (2022) Mechanisms of kaempferol in the treatment of diabetes: a comprehensive and latest review. Front Endocrinol (Lausanne) 13:990299. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36157449. https://doi.org/10.3389/fendo.2022.990299

Yilmaz DE, Kirschner K, Demirci H, Himmerkus N, Bachmann S, & Mutig K (2022) Immunosuppressive calcineurin inhibitor cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J Biol Chem 298(3):101589. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/35033536. https://doi.org/10.1016/j.jbc.2022.101589

Yu H, Huang X, Zhu HH, Wang N, Xie C, Zhou YL, Dong JC (2023a) Apigenin ameliorates non-eosinophilic inflammation, dysregulated immune homeostasis and mitochondria-mediated airway epithelial cell apoptosis in chronic obese asthma via the ROS-ASK1-MAPK pathway. Phytomedicine 111:154646. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/36645975. https://doi.org/10.1016/j.phymed.2023.154646

Yu J, Wei X, Gao J, Wang C, & Wei W (2023b) Role of cyclosporin A in the treatment of kidney disease and nephrotoxicity. Toxicology 492:153544. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37164250. https://doi.org/10.1016/j.tox.2023.153544

Zeng YQ, Liu XS, Wu S, Zou C, Xie Q, Xu SM, Dai Z (2015) Kaempferol promotes transplant tolerance by sustaining CD4+FoxP3+ regulatory T cells in the presence of calcineurin inhibitor. Am J Transplant 15(7):1782–1792. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25808405. https://doi.org/10.1111/ajt.13261

Zhang B, Liu P, Sheng H, Guo Y, Han Y, Suo L, & Yuan Q (2023) New insight into the potential protective function of sulforaphene against ROS-mediated oxidative stress damage in vitro and in vivo. Int J Mol Sci 24(17). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37685936. https://doi.org/10.3390/ijms241713129

Zhu Z, Liao R, Shi Y, Li J, Cao J, Liao B, Li G (2023) Polystyrene nanoplastics induce apoptosis of human kidney proximal tubular epithelial cells via oxidative stress and MAPK signaling pathways. Environ Sci Pollut Res Int. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/37792190. https://doi.org/10.1007/s11356-023-30155-x

留言 (0)

沒有登入
gif