Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641–61. https://doi.org/10.1038/s41573-023-00709-2.
Article CAS PubMed Google Scholar
Deslandes A. Comparative clinical pharmacokinetics of antibody-drug conjugates in first-in-human Phase 1 studies. MAbs. 2014;6(4):859–70. https://doi.org/10.4161/mabs.28965.
Article PubMed PubMed Central Google Scholar
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. https://doi.org/10.1038/s41392-022-00947-7.
Article CAS PubMed PubMed Central Google Scholar
Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res. 2012;29(9):2354–66. https://doi.org/10.1007/s11095-012-0800-y.
Article CAS PubMed Google Scholar
Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70. https://doi.org/10.1158/1078-0432.CCR-04-0789.
Article CAS PubMed Google Scholar
Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32(11):3508–25. https://doi.org/10.1007/s11095-015-1626-1.
Article CAS PubMed Google Scholar
Marshall SF, Burghaus R, Cosson V, et al. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93–122. https://doi.org/10.1002/psp4.12049.
Article CAS PubMed PubMed Central Google Scholar
Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60. https://doi.org/10.1182/blood-2013-01-466706.
Article CAS PubMed PubMed Central Google Scholar
Fostvedt LK, Hibma JE, Masters JC, Vandendries E, Ruiz-Garcia A. Pharmacokinetic/pharmacodynamic modeling to support the re-approval of gemtuzumab ozogamicin. Clin Pharmacol Ther. 2019;106(5):1006–17. https://doi.org/10.1002/cpt.1500.
Article PubMed PubMed Central Google Scholar
Zuo P. Capturing the magic bullet: pharmacokinetic principles and modeling of antibody-drug conjugates. AAPS J. 2020;22(5):105. https://doi.org/10.1208/s12248-020-00475-8.
Article CAS PubMed Google Scholar
Garrett M, Ruiz-Garcia A, Parivar K, et al. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn. 2019;46(3):211–22. https://doi.org/10.1007/s10928-018-9614-9.
Article CAS PubMed PubMed Central Google Scholar
Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90. https://doi.org/10.1158/0008-5472.CAN-08-1776.
Article CAS PubMed Google Scholar
Center for Drug Evaluation and Research (CDR). Clinical pharmacology and biopharmaceutics review for trastuzumab emtansine. Application number: 125427Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000ClinPharmR.pdf. Accessed 20 Apr 2024.
Gupta M, Lorusso PM, Wang B, et al. Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol. 2012;52(5):691–703. https://doi.org/10.1177/0091270011403742.
Article CAS PubMed Google Scholar
DiJoseph JF, Dougher MM, Kalyandrug LB, et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res. 2006;12(1):242–9. https://doi.org/10.1158/1078-0432.CCR-05-1905.
Article CAS PubMed Google Scholar
Scott LJ. Brentuximab Vedotin: A Review in CD30-Positive Hodgkin Lymphoma. Drugs. 2017;77(4):435–45. https://doi.org/10.1007/s40265-017-0705-5.
Article CAS PubMed PubMed Central Google Scholar
Center for Drug Evaluation and Research (CDR). Clinical pharmacology and biopharmaceutics review for brentuximab vedotin. Application number: 125388Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/125388Orig1s000ClinPharmR.pdf. Accessed 20 Apr 2024.
Suri A, Mould DR, Liu Y, Jang G, Venkatakrishnan K. Population PK and exposure-response relationships for the antibody-drug conjugate brentuximab vedotin in CTCL patients in the phase III ALCANZA study. Clin Pharmacol Ther. 2018;104(5):989–99. https://doi.org/10.1002/cpt.1037.
Article CAS PubMed PubMed Central Google Scholar
Suri A, Mould DR, Song G, et al. Population pharmacokinetic modeling and exposure-response assessment for the antibody-drug conjugate brentuximab vedotin in Hodgkin’s lymphoma in the phase III ECHELON-1 study. Clin Pharmacol Ther. 2019;106(6):1268–79. https://doi.org/10.1002/cpt.1530.
Article CAS PubMed PubMed Central Google Scholar
Li H, Han TH, Hunder NN, Jang G, Zhao B. Population pharmacokinetics of brentuximab vedotin in patients with CD30-expressing hematologic malignancies. J Clin Pharmacol. 2017;57(9):1148–58. https://doi.org/10.1002/jcph.920.
Article CAS PubMed PubMed Central Google Scholar
Lu D, Joshi A, Wang B, et al. An integrated multiple-analyte pharmacokinetic model to characterize trastuzumab emtansine (T-DM1) clearance pathways and to evaluate reduced pharmacokinetic sampling in patients with HER2-positive metastatic breast cancer. Clin Pharmacokinet. 2013;52(8):657–72. https://doi.org/10.1007/s40262-013-0060-y.
Article CAS PubMed Google Scholar
Chudasama VL, Schaedeli Stark F, Harrold JM, et al. Semi-mechanistic population pharmacokinetic model of multivalent trastuzumab emtansine in patients with metastatic breast cancer. Clin Pharmacol Ther. 2012;92(4):520–7. https://doi.org/10.1038/clpt.2012.153.
Article CAS PubMed Google Scholar
Dornan D, Bennett F, Chen Y, et al. Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9. https://doi.org/10.1182/blood-2009-02-205500.
Article CAS PubMed Google Scholar
Center for Drug Evaluation and Research (CDR). Clinical pharmacology review for polatuzumab vedotin. Application number: 761121Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761121Orig1s000ClinPharmR.pdf. Accessed 20 Apr 2024.
Lu D, Lu T, Gibiansky L, Li X, Li C, Agarwal P, Shemesh CS, Shi R, Dere RC, Hirata J, Miles D, Chanu P, Girish S, Jin JY. Integrated Two-Analyte Population Pharmacokinetic Model of Polatuzumab Vedotin in Patients With Non-Hodgkin Lymphoma. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):48–59. https://doi.org/10.1002/psp4.12482.
Article CAS PubMed Google Scholar
Breij EC, de Goeij BE, Verploegen S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–26. https://doi.org/10.1158/0008-5472.CAN-13-2440.
Article CAS PubMed Google Scholar
Center for Drug Evaluation and Research (CDR). Muti-discipline review for tisotumab vedotin. Application number: 761208Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/761208Orig1s000MultidisciplineR.pdf. Accessed 20 Apr 2024.
Gibiansky L, Passey C, Voellinger J, et al. Population pharmacokinetic analysis for tisotumab vedotin in patients with locally advanced and/or metastatic solid tumors. CPT Pharmacometrics Syst Pharmacol. 2022;11(10):1358–70. https://doi.org/10.1002/psp4.12850.
Article CAS PubMed PubMed Central Google Scholar
Passey C, Voellinger J, Gibiansky L, et al. Exposure-safety and exposure-efficacy analyses for tisotumab vedotin for patients with locally advanced or metastatic solid tumors. CPT Pharmacometrics Syst Pharmacol. 2023;12(9):1262–73.
留言 (0)