Adams E, Diaz C, Hong J-P, Shin R (2014) 14-3-3 proteins participate in light signaling through association with Phytochrome interacting factors. Int J Mol Sci 15:22801–22814
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208
Article CAS PubMed PubMed Central Google Scholar
Börnke F (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J Plant Physiol 162:161–168
Boston P, Jackson P (1980) Purification and properties of a brain-specific protein, human 14-3-3 protein. Portland Press Ltd.
Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:1–21
Chaudhary R, Peng HC, He J, MacWilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett MB, Kaloshian I (2019) Aphid effector Me10 interacts with tomato TFT 7, a 14-3‐3 isoform involved in aphid resistance. New Phytol 221:1518–1528
Article CAS PubMed Google Scholar
Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13:53–63
Article CAS PubMed Google Scholar
Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009) Virus-induced gene silencing reveals the involvement of ethylene‐, salicylic acid‐and mitogen‐activated protein kinase‐related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136:324–335
Article CAS PubMed Google Scholar
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y (2023) TBtools-II: a one for all. All for One Bioinformatics Platform for Biological Big-data Mining. Molecular Plant
DeLille JM, Sehnke PC, Ferl RJ (2001) The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 126:35–38
Article CAS PubMed PubMed Central Google Scholar
Evangelisti E, Guyon A, Shenhav L, Schornack S (2023) FIRE mimics a 14-3-3-binding motif to promote Phytophthora palmivora infection. Molecular Plant-Microbe Interactions
Ferreira V, González M, Pianzzola MJ, Coll NS, Siri MI, Valls M (2021) Molecular Detection of Ralstonia solanacearum to Facilitate Breeding for Resistance to Bacterial Wilt in Potato. Solanum tuberosum: Methods and Protocols:375–385
Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Springer
Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V (2019) Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteom 193:44–61
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q (2022) Genome-wide identification and expression analysis of the 14-3-3 (TFT) Gene Family in Tomato, and the role of SlTFT4 in salt stress. Plants 11:3491
Article CAS PubMed PubMed Central Google Scholar
Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, Liao B (2017) Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci 8:283835
Jiang W, He J, Babla M, Wu T, Tong T, Riaz A, Zeng F, Qin Y, Chen G, Deng F (2024) Molecular evolution and interaction of 14-3-3 proteins with H+-ATPases in plant abiotic stresses. J Exp Bot 75:689–707
Jing S, Sun X, Yu L, Wang E, Cheng Z, Liu H, Jiang P, Qin J, Begum S, Song B (2022) Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiol 189:1677–1693
Article CAS PubMed PubMed Central Google Scholar
Jing S, Jiang P, Sun X, Yu L, Wang E, Qin J, Zhang F, Prat S, Song B (2023) Long-distance control of potato storage organ formation by self pruning 3D and flowering locus T-like 1. Plant Communications 4
Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2006) The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive1. Plant Cell 18:626–638
Article CAS PubMed PubMed Central Google Scholar
Konagaya K-i, Matsushita Y, Kasahara M, Nyunoya H (2004) Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of Tobacco mosaic virus. J Gen Plant Pathol 70:221–231
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874
Article CAS PubMed PubMed Central Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327
Article CAS PubMed PubMed Central Google Scholar
Letunic I, Khedkar S, Bork P (2021) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460
Article CAS PubMed Google Scholar
Liang Y, Ma F, Zhang R, Li W, Dang J, Su H, Li B, Hu T, Zhang M, Liang Y (2023) Genome-wide identification and characterization of tomato 14‐3‐3 (SlTFT) genes and functional analysis of SlTFT6 under heat stress. Physiol Plant 175:e13888
Article CAS PubMed Google Scholar
Lozano-Durán R, Robatzek S (2015) 14-3-3 proteins in plant-pathogen interactions. Mol Plant Microbe Interact 28:511–518
Lu G, DeLisle AJ, de Vetten NC, Ferl RJ (1992) Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci 89:11490–11494
Article CAS PubMed PubMed Central Google Scholar
Lyu S, Chen G, Pan D, Chen J, She W (2021) Molecular analysis of 14-3-3 genes in Citrus sinensis and their responses to different stresses. Int J Mol Sci 22:568
Article CAS PubMed PubMed Central Google Scholar
Ma Y, Yang J, Dong J, Zhang S, Yang W, Zhao J, Yang T, Chen L, Zhou L, Wang J (2022) Overexpression of OsGF14f enhances quantitative Leaf Blast and bacterial blight resistance in Rice. Int J Mol Sci 23:7440
Article CAS PubMed PubMed Central Google Scholar
Massa AN, Childs KL, Lin H, Bryan GJ, Giuliano G, Buell CR (2011) The transcriptome of the reference potato genome Solanum tuberosum Group Phureja clone DM1-3 516R44. PLoS ONE 6:e26801
Article CAS PubMed PubMed Central Google Scholar
Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274
Article CAS PubMed Google Scholar
Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914
Article CAS PubMed Google Scholar
Oh C-S, Pedley KF, Martin GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK α. Plant Cell 22:260–272
Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell CR (2020) Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 9:giaa100
Article PubMed PubMed Central Google Scholar
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204
Article CAS PubMed PubMed Central Google Scholar
Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C (2016) Genome-wide identification and expression analysis of the 14-3-3 family genes in Medicago truncatula. Front Plant Sci 7:320
Article PubMed PubMed Central Google Scholar
Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS, de Boer AH (2007) 14-3‐3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J 49:289–301
留言 (0)