Synthesis of Nano-CuO Powder via Sol– Gel and Investigation the Effective Factors on the Final Size

1. Siddiqui H, Qureshi MS, Haque FZ. Valuation of copper oxide (CuO) nanoflakes for its suitability as an absorbing material in solar cells fabrication. Optik. 2016;127(8):3713-3717.

2. Wanninayake AP, Gunashekar S, Li S, Church BC, Abu-Zahra N. Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond Sci Technol. 2015;30(6):064004.

3. Zhao S, Shen Y, Hao F, Kang C, Cui B, Wei D, Meng F. P-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Appl Surf Sci. 2021;538:148140.

4. Preda N, Costas A, Beregoi M, Apostol N, Kuncser A, Curutiu C, et al. Functionalization of eggshell membranes with CuO-ZnO based p-n junctions for visible light induced antibacterial activity against Escherichia coli. Sci Rep. 2020;10(1):20960-20960.

5. Deng Y, Shi X, Wei L, Liu H, Li J, Ou X, et al. Effect of intergrowth and coexistence CuO-CeO2 catalyst by grinding method application in the catalytic reduction of NOx by CO. J Alloys Compd. 2021;869:159231.

6. Li H, Huang J, Yang J, Yang Z, Qu W, Xu Z, Shih K. Reduction of oxidized mercury over NOx selective catalytic reduction catalysts: A review. Chem Eng J. 2021;421:127745.

7. Tamm A, Tarre A, Verchenko V, Seemen H, Stern R. Atomic Layer Deposition of Superconducting CuO Thin Films on Three-Dimensional Substrates. Crystals. 2020;10(8):650.

8. Singh BP, Chaudhary M, Kumar A, Singh AK, Gautam YK, Rani S, Walia R. Effect of Co and Mn doping on the morphological, optical and magnetic properties of CuO nanostructures. Solid State Sciences. 2020;106:106296.

9. Wu L-f, Wang Y-h, Li P-l, Wu X, Shang M, Xiong Z-z, et al. Enhanced nonlinear optical behavior of graphene-CuO nanocomposites investigated by Z-scan technique. J Alloys Compd. 2019;777:759-766.

10. Bunea R, Saikumar AK, Sundaram K. A Comparison of Optical Properties of CuO and Cu<sub>2</sub>O Thin Films for Solar Cell Applications. Materials Sciences and Applications. 2021;12(07):315-329.

11. Wang P, Gou X-X, Xin S, Cao F-F. Facile synthesis of CuO nanochains as high-rate anode materials for lithium-ion batteries. New J Chem. 2019;43(17):6535-6539.

12. Xu Y, Chu K, Li Z, Xu S, Yao G, Niu P, Zheng F. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Transactions. 2020;49(33):11597-11604.

13. Sun M, Lei Y, Cheng H, Ma J, Qin Y, Kong Y, Komarneni S. Mg doped CuO–Fe2O3 composites activated by persulfate as highly active heterogeneous catalysts for the degradation of organic pollutants. J Alloys Compd. 2020;825:154036.

14. Walters CM, Adair KR, Hamad WY, MacLachlan MJ. Synthesis of Chiral Nematic Mesoporous Metal and Metal Oxide Nanocomposites and their Use as Heterogeneous Catalysts. Eur J Inorg Chem. 2020;2020(41):3937-3943.

15. Abdpour S, Santos RM. Recent advances in heterogeneous catalysis for supercritical water oxidation/gasification processes: Insight into catalyst development. Process Saf Environ Prot. 2021;149:169-184.

16. Lee JE, Lim CK, Park HJ, Song H, Choi S-Y, Lee D-S. ZnO–CuO Core-Hollow Cube Nanostructures for Highly Sensitive Acetone Gas Sensors at the ppb Level. ACS Applied Materials & Interfaces. 2020;12(31):35688-35697.

17. Chaloeipote G, Prathumwan R, Subannajui K, Wisitsoraat A, Wongchoosuk C. 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Mater Sci Semicond Process. 2021;123:105546.

18. Patil P, Nakate UT, Nakate YT, Ambare RC. Acetaldehyde sensing properties using ultrafine CuO nanoparticles. Mater Sci Semicond Process. 2019;101:76-81.

19. Baranov O, Bazaka K, Belmonte T, Riccardi C, Roman HE, Mohandas M, et al. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. Nanoscale Horizons. 2023;8(5):568-602.

留言 (0)

沒有登入
gif