Deep learning applications in breast cancer histopathological imaging: diagnosis, treatment, and prognosis

Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Cell. 2023;186:1708–28.

Article  CAS  PubMed  Google Scholar 

Onkar SS, Carleton NM, Lucas PC, et al. The great Immune escape: understanding the Divergent Immune response in breast Cancer subtypes. Cancer Discov. 2023;13:23–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardoso MJ, Poortmans P, Senkus E, et al. Breast cancer highlights from 2023: knowledge to guide practice and future research. Breast. 2024;74:103674.

Article  PubMed  PubMed Central  Google Scholar 

Laws A, Punglia RS. Endocrine therapy for primary and secondary Prevention after diagnosis of high-risk breast lesions or preinvasive breast Cancer. J Clin Oncol. 2023;41:3092–9.

Article  CAS  PubMed  Google Scholar 

Loibl S, André F, Bachelot T, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2024;35:159–82.

Article  CAS  PubMed  Google Scholar 

Nicholson WK, Silverstein M, Wong JB, et al. Screening for breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2024;331:1918–30.

Article  PubMed  Google Scholar 

Unger M, Kather JN. Deep learning in cancer genomics and histopathology. Genome Med. 2024;16:44.

Article  PubMed  PubMed Central  Google Scholar 

Koetzier LR, Mastrodicasa D, Szczykutowicz TP, et al. Deep Learning Image Reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306:e221257.

Article  PubMed  Google Scholar 

Zhang J, Wu J, Zhou XS, et al. Recent advancements in artificial intelligence for breast cancer: image augmentation, segmentation, diagnosis, and prognosis approaches. Semin Cancer Biol. 2023;96:11–25.

Article  CAS  PubMed  Google Scholar 

Zhao X, Bai JW, Guo Q, et al. Clinical applications of deep learning in breast MRI. Biochim Biophys Acta Rev Cancer. 2023;1878:188864.

Article  CAS  PubMed  Google Scholar 

Zhang C, Xu J, Tang R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. J Hematol Oncol. 2023;16:114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper M, Ji Z, Krishnan RG. Machine learning in computational histopathology: challenges and opportunities. Genes Chromosomes Cancer. 2023;62:540–56.

Article  CAS  PubMed  Google Scholar 

Amorim JP, Abreu PH, Fernandez A, et al. Interpreting Deep Machine Learning models: an Easy Guide for oncologists. IEEE Rev Biomed Eng. 2023;16:192–207.

Article  PubMed  Google Scholar 

Anwar SM, Majid M, Qayyum A, et al. Medical Image Analysis using Convolutional neural networks: a review. J Med Syst. 2018;42:226.

Article  PubMed  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016; 770–778.

Simonyan K, Zisserman AJ. Very deep convolutional networks for large-scale image recognition. 2014.

Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2015; 1–9.

Zhang J, Zhang Y, Jin Y, et al. MDU-Net: multi-scale densely connected U-Net for biomedical image segmentation. Health Inf Sci Syst. 2023;11:13.

Article  PubMed  Google Scholar 

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18. Springer. 2015; 234–241.

Xuan X, Zhang X, Kwon OH, Ma KL. VAC-CNN: a visual Analytics System for comparative studies of deep convolutional neural networks. IEEE Trans Vis Comput Graph. 2022;28:2326–37.

PubMed  Google Scholar 

Vaswani A, Shazeer N, Parmar N et al. Atten is all you need. 2017; 30.

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words. Transformers for image recognition at scale; 2020.

Iqbal A, Sharif M, Yasmin M, et al. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey. Int J Multimed Inf Retr. 2022;11:333–68.

Article  PubMed  PubMed Central  Google Scholar 

Kazeminia S, Baur C, Kuijper A, et al. GANs for medical image analysis. Artif Intell Med. 2020;109:101938.

Article  PubMed  Google Scholar 

Shokraei Fard A, Reutens DC, Vegh V. From CNNs to GANs for cross-modality medical image estimation. Comput Biol Med. 2022;146:105556.

Article  PubMed  Google Scholar 

Chen L, Pan X, Zhang YH, et al. Classification of widely and rarely expressed genes with recurrent neural network. Comput Struct Biotechnol J. 2019;17:49–60.

Article  CAS  PubMed  Google Scholar 

Wen A, Fu S, Moon S, et al. Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation. NPJ Digit Med. 2019;2:130.

Article  PubMed  PubMed Central  Google Scholar 

Matsuo Y, LeCun Y, Sahani M, et al. Deep learning, reinforcement learning, and world models. Neural Netw. 2022;152:267–75.

Article  PubMed  Google Scholar 

Zhou SK, Le HN, Luu K, et al. Deep reinforcement learning in medical imaging: a literature review. Med Image Anal. 2021;73:102193.

Article  PubMed  Google Scholar 

Mandair D, Reis-Filho JS, Ashworth A. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. NPJ Breast Cancer. 2023;9:21.

Article  PubMed  PubMed Central  Google Scholar 

Rai HM, Yoo J. A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. J Cancer Res Clin Oncol. 2023;149:14365–408.

Article  PubMed  Google Scholar 

Xiao B, Xu B, Bi X, Li W. Global-feature encoding U-Net (GEU-Net) for Multi-focus Image Fusion. IEEE Trans Image Process. 2021;30:163–75.

Article  PubMed  Google Scholar 

Jiang X, Hu Z, Wang S, Zhang Y. Deep learning for medical image-based Cancer diagnosis. Cancers (Basel) 2023; 15.

Petinrin OO, Saeed F, Toseef M, et al. Machine learning in metastatic cancer research: potentials, possibilities, and prospects. Comput Struct Biotechnol J. 2023;21:2454–70.

Article  PubMed  PubMed Central  Google Scholar 

Yang H, Chen R, Li D, Wang Z. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data. Bioinformatics. 2021;37:2231–7.

Article  PubMed  Google Scholar 

Daneshjou R, He B, Ouyang D, Zou JY. How to evaluate deep learning for cancer diagnostics - factors and recommendations. Biochim Biophys Acta Rev Cancer. 2021;1875:188515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 2020;471:61–71.

Article  CAS  PubMed  Google Scholar 

Duggento A, Conti A, Mauriello A, et al. Deep computational pathology in breast cancer. Semin Cancer Biol. 2021;72:226–37.

Article  PubMed  Google Scholar 

Cruz-Roa A, Gilmore H, Basavanhally A, et al. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS ONE. 2018;13:e0196828.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif