An experimental census of retrons for DNA production and genome editing

Yee, T., Furuichi, T., Inouye, S. & Inouye, M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209 (1984).

Article  CAS  PubMed  Google Scholar 

Inouye, S., Hsu, M. Y., Eagle, S. & Inouye, M. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56, 709–717 (1989).

Article  CAS  PubMed  Google Scholar 

Hsu, M. Y., Eagle, S. G., Inouye, M. & Inouye, S. Cell-free synthesis of the branched RNA-linked msDNA from retron-Ec67 of Escherichia coli. J. Biol. Chem. 267, 13823–13829 (1992).

Article  CAS  PubMed  Google Scholar 

Shimamoto, T., Inouye, M. & Inouye, S. The formation of the 2′,5′-phosphodiester linkage in the cDNA priming reaction by bacterial reverse transcriptase in a cell-free system. J. Biol. Chem. 270, 581–588 (1995).

Article  CAS  PubMed  Google Scholar 

Shimamoto, T., Kawanishi, H., Tsuchiya, T., Inouye, S. & Inouye, M. In vitro synthesis of multicopy single-stranded DNA, using separate primer and template RNAs, by Escherichia coli reverse transcriptase. J. Bacteriol. 180, 2999–3002 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon, A. J., Ellington, A. D. & Finkelstein, I. J. Retrons and their applications in genome engineering. Nucleic Acids Res. 47, 11007–11019 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

Article  CAS  PubMed  Google Scholar 

Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems. Nature 609, 144–150 (2022).

Article  CAS  PubMed  Google Scholar 

Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F. & Toro, N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res. 48, 12632–12647 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism. Nat. Microbiol. 7, 1480–1489 (2022).

Article  CAS  PubMed  Google Scholar 

Palka, C., Fishman, C. B., Bhattarai-Kline, S., Myers, S. A. & Shipman, S. L. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1. Nucleic Acids Res. 50, 3490–3504 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, G. & Kim, J. Engineered retrons generate genome-independent protein-binding DNA for cellular control. Preprint at bioRxiv https://doi.org/10.1101/2023.09.27.556556 (2023).

Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

Article  CAS  PubMed  Google Scholar 

Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell 12, 899–902 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, B., Chen, S. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J. 5, 31–39 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, W. et al. Retron-mediated multiplex genome editing and continuous evolution in Escherichia coli. Nucleic Acids Res. 51, 8293–8307 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fishman, C. B. et al. Continuous multiplexed phage genome editing using recombitrons. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02370-5 (2024).

González-Delgado, A., Lopez, S. C., Rojas-Montero, M., Fishman, C. B. & Shipman, S. L. Simultaneous multi-site editing of individual genomes using retron arrays. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01665-7 (2024).

Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wimberger, S. et al. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. Nat. Commun. 14, 4761 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lampson, B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499 (2005).

Article  CAS  PubMed  Google Scholar 

Kim, K., Jeong, D. & Lim, D. A mutational study of the site-specific cleavage of EC83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage. J. Bacteriol. 179, 6518–6521 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lease, R. A. & Yee, T. Early events in the synthesis of the multicopy single-stranded DNA–RNA branched copolymer of Myxococcus xanthus. J. Biol. Chem. 266, 14497–14503 (1991).

Article  CAS  PubMed  Google Scholar 

Azam, A. H. et al. Viruses encode tRNA and anti-retron to evade bacterial immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532788 (2023).

Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

Article  CAS  PubMed  Google Scholar 

Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

Article 

留言 (0)

沒有登入
gif