Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids

Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

Article  CAS  PubMed  Google Scholar 

Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, Y. et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21, 447–454 (2018).

Article  CAS  PubMed  Google Scholar 

Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, B. H. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, W. L., Shi, X. H., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, Z. et al. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 204, 114076 (2022).

Article  CAS  PubMed  Google Scholar 

Mitsis, P. G. & Kwagh, J. G. Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res. 27, 3057–3063 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, X. et al. A structure–activity analysis for probing the mechanism of processive double-stranded DNA digestion by λ exonuclease trimers. Biochemistry 54, 6139–6148 (2015).

Article  CAS  PubMed  Google Scholar 

Tian, J. et al. dsDNA/ssDNA-switchable isothermal colorimetric biosensor based on a universal primer and λ exonuclease. Sens. Actuators B Chem. 323, 128674 (2020).

Article  CAS  Google Scholar 

Liu, L., Lei, J., Gao, F. & Ju, H. A DNA machine for sensitive and homogeneous DNA detection via λ exonuclease assisted amplification. Talanta 115, 819–822 (2013).

Article  CAS  PubMed  Google Scholar 

Yu, Y. et al. Digestion of dynamic substrate by exonuclease reveals high single-mismatch selectivity. Anal. Chem. 90, 13655–13662 (2018).

Article  CAS  PubMed  Google Scholar 

Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).

Article  CAS  PubMed  Google Scholar 

Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).

Article  CAS  PubMed  Google Scholar 

Wu, T. et al. Noncanonical substrate preference of λ exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Res. 46, 3119–3129 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, T. et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res. 46, e24 (2018).

Article  CAS  PubMed  Google Scholar 

Zhang, J. J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J., Pan, X. & Bell, C. E. Crystal structure of λ exonuclease in complex with DNA and Ca2+. Biochemistry 53, 7415–7425 (2014).

Article  CAS  PubMed  Google Scholar 

Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat. Struct. Mol. Biol. 25, 347–354 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cromwell, C. R. et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9, 1448 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kim, Y.-M., Choi, K. H., Jang, Y.-J., Yu, J. & Jeong, S. Specific modulation of the anti-DNA autoantibody–nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. 300, 516–523 (2003).

Article  CAS  PubMed  Google Scholar 

Machinek, R. R., Ouldridge, T. E., Haley, N. E., Bath, J. & Turberfield, A. J. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014).

Article  CAS  PubMed  Google Scholar 

Monis, P. T. & Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect. Genet. Evol. 6, 2–12 (2006).

Article  CAS  PubMed  Google Scholar 

Nouri, R. et al. CRISPR-based detection of SARS-CoV-2: a review from sample to result. Biosens. Bioelectron. 178, 11301

留言 (0)

沒有登入
gif