Is SIRT3 and Mitochondria a Reliable Target for Parkinson’s Disease and Aging? A Narrative Review

Moniot S, Weyand M, Steegborn C (2012) Structures, substrates, and regulators of mammalian Sirtuins–opportunities and challenges for drug development. Front Pharmacol 3:16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carafa V, Rotili D, Forgione M et al (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61. https://doi.org/10.1186/s13148-016-0224-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milne JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17

Article  CAS  PubMed  Google Scholar 

Khanna A, Acharjee P, Acharjee A, Trigun SK (2019) Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat 95:43–53

Article  PubMed  Google Scholar 

Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL (2011) SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta BBA-Rev Cancer 1816:80–88

CAS  Google Scholar 

Manjula R, Anuja K, Alcain FJ (2021) SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol 11:585821

Article  PubMed  PubMed Central  Google Scholar 

Min SW, Sohn PD, Cho SH, Swanson RA, Gan L (2013) Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci 25(5):53

Google Scholar 

Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NO (2022) Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 179(8):1496–511

Article  CAS  PubMed  Google Scholar 

Chandramowlishwaran P, Vijay A, Abraham D, Li G, Mwangi SM, Srinivasan S (2020) Role of sirtuins in modulating neurodegeneration of the enteric nervous system and central nervous system. Front Neurosci 14:614331

Article  PubMed  PubMed Central  Google Scholar 

Nguyen GTT, Schaefer S, Gertz M et al (2013) Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Acta Crystallogr D Biol Crystallogr 69:1423–1432

Article  CAS  PubMed  Google Scholar 

Chen Y, Fu LL, Wen X et al (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis 5:e1047–e1047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M (2023) Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech 13(1):29

Article  PubMed  Google Scholar 

Xie J, Zhang W, Zhu X, Deng M, Lai L (2023) Coevolution-based prediction of key allosteric residues for protein function regulation. Elife. 12:e81850

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J-Y, Deng Y-N, Zhang M et al (2016) SIRT3 acts as a neuroprotective agent in rotenone-induced Parkinson cell model. Neurochem Res 41:1761–1773. https://doi.org/10.1007/s11064-016-1892-2

Article  CAS  PubMed  Google Scholar 

Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444:1–10

Article  CAS  PubMed  Google Scholar 

Guerriero RM, Giza CC, Rotenberg A (2015) Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 15:27. https://doi.org/10.1007/s11910-015-0545-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bullock R, Zauner A, Woodward JJ et al (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

Article  CAS  PubMed  Google Scholar 

Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J, Liu P (2024) The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci 20(3):831

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong A, Lüth H-J, Deuther-Conrad W et al (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40

Article  CAS  PubMed  Google Scholar 

Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7:376

CAS  PubMed  PubMed Central  Google Scholar 

Gupta G, Singhvi G, Chellappan DK et al (2018) Peroxisome proliferator-activated receptor gamma: promising target in glioblastoma. Panminerva Med 60:109–11

Article  PubMed  Google Scholar 

Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26. https://doi.org/10.1007/s12291-014-0446-0

Article  CAS  PubMed  Google Scholar 

Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franzoni F, Scarfò G, Guidotti S et al (2021) Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front Neurosci 15:729757

Article  PubMed  PubMed Central  Google Scholar 

Kandlur A, Satyamoorthy K, Gangadharan G (2020) Oxidative stress in cognitive and epigenetic aging: a retrospective glance. Front Mol Neurosci 13:41

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Hung ML, Fraguela MG (2014) Oxidative stress in neurological diseases: cause or effect? Neurol Engl Ed 8:451–452

Google Scholar 

Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5:a011304

Article  PubMed  PubMed Central  Google Scholar 

Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21:204–224

Article  CAS  PubMed  Google Scholar 

Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189

Article  PubMed  Google Scholar 

Debattisti V, Gerencser AA, Saotome M et al (2017) ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep 21:1667–1680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21:2346

留言 (0)

沒有登入
gif