Neurotropic Murine β-Coronavirus Infection Causes Differential Expression of Connexin 47 in Oligodendrocyte Subpopulations Associated with Demyelination

Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656. https://doi.org/10.1038/nrneurol.2012.168

Article  CAS  PubMed  Google Scholar 

Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/WNL.0000000000000560

Article  PubMed  PubMed Central  Google Scholar 

Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172. https://doi.org/10.1093/brain/awl217

Article  PubMed  Google Scholar 

Bergmann CC, Lane TE, Stohlman SA (2006) Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 4(2):121–132. https://doi.org/10.1038/nrmicro1343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das Sarma J, Iacono K, Gard L, Marek R, Kenyon LC, Koval M, Weiss SR (2008) Demyelinating and nondemyelinating strains of mouse hepatitis virus differ in their neural cell tropism. J Virol 82(11):5519–5526. https://doi.org/10.1128/JVI.01488-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lane TE, Buchmeier MJ (1997) Murine coronavirus infection: a paradigm for virus-induced demyelinating disease. Trends Microbiol 5(1):9–14. https://doi.org/10.1016/S0966-842X(97)81768-4

Article  CAS  PubMed  Google Scholar 

Matthews AE, Weiss SR, Paterson Y (2002) Murine hepatitis virus–a model for virus-induced CNS demyelination. J Neurovirol 8(2):76–85. https://doi.org/10.1080/13550280290049534

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das Sarma J, Kenyon LC, Hingley ST, Shindler KS (2009) Mechanisms of primary axonal damage in a viral model of multiple sclerosis. J Neurosci 29(33):10272–10280. https://doi.org/10.1523/JNEUROSCI.1975-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavi E, Gilden DH, Wroblewska Z, Rorke LB, Weiss SR (1984) Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology 34(5):597–603. https://doi.org/10.1212/wnl.34.5.597

Article  CAS  PubMed  Google Scholar 

Perlman S (2020) Another decade, another coronavirus. N Engl J Med 382(8):760–762. https://doi.org/10.1056/NEJMe2001126

Article  PubMed  PubMed Central  Google Scholar 

Adami C, Pooley J, Glomb J, Stecker E, Fazal F, Fleming JO, Baker SC (1995) Evolution of mouse hepatitis virus (MHV) during chronic infection: quasispecies nature of the persisting MHV RNA. Virology 209(2):337–346. https://doi.org/10.1006/viro.1995.1265

Article  CAS  PubMed  Google Scholar 

Perlman S, Jacobsen G, Olson AL, Afifi A (1990) Identification of the spinal cord as a major site of persistence during chronic infection with a murine coronavirus. Virology 175(2):418–426. https://doi.org/10.1016/0042-6822(90)90426-r

Article  CAS  PubMed  Google Scholar 

Lavi E, Gilden DH, Highkin MK, Weiss SR (1984) Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by in situ hybridization. J Virol 51(2):563–566. https://doi.org/10.1128/JVI.51.2.563-566.1984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knobler RL, Lampert PW, Oldstone MB (1982) Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature 298(5871):279–280. https://doi.org/10.1038/298279a0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26(20):5438–5447. https://doi.org/10.1523/JNEUROSCI.0037-06.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1(1):a002576. https://doi.org/10.1101/cshperspect.a002576

Article  PubMed  PubMed Central  Google Scholar 

Laird DW, Lampe PD (2018) Therapeutic strategies targeting connexins. Nat Rev Drug Discov 17(12):905–921. https://doi.org/10.1038/nrd.2018.138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99. https://doi.org/10.1038/nrn2757

Article  CAS  PubMed  Google Scholar 

Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35(1):101–116. https://doi.org/10.1007/s12031-007-9027-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24(18):4313–4323. https://doi.org/10.1523/JNEUROSCI.3303-03.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47(4):346–357. https://doi.org/10.1002/glia.20043

Article  PubMed  Google Scholar 

Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H et al (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23(11):4549–4559. https://doi.org/10.1523/JNEUROSCI.23-11-04549.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 42(3):506–513. https://doi.org/10.1016/j.nbd.2011.03.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58(9):1104–1117. https://doi.org/10.1002/glia.20991

Article  PubMed  Google Scholar 

Basu R, Sarma JD (2018) Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination. J Biosci 43(5):1055–1068. https://doi.org/10.1007/s12038-018-9811-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27(51):13949–13957. https://doi.org/10.1523/JNEUROSCI.3395-07.2007

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif