Development, External Validation, and Biomolecular Corroboration of Interoperable Models for Identifying Critically Ill Children at Risk of Neurologic Morbidity

Abstract

Abstract Importance Declining mortality in the field of pediatric critical care medicine has shifted practicing clinicians' attention to preserving patients' neurodevelopmental potential as a main objective. Earlier identification of critically ill children at risk for incurring neurologic morbidity would facilitate heightened surveillance that could lead to timelier clinical detection, earlier interventions, and preserved neurodevelopmental trajectory. Objective Develop machine-learning models for identifying acquired neurologic morbidity while hospitalized with critical illness and assess correlation with contemporary serum-based, brain injury-derived biomarkers. Design Retrospective cohort study. Setting Two large, quaternary children's hospitals. Exposures Critical illness. Main Outcomes and Measures The outcome was neurologic morbidity, defined according to a computable, composite definition at the development site or an order for neurocritical care consultation at the validation site. Models were developed using varying time windows for temporal feature engineering and varying censored time horizons prior to identified neurologic morbidity. Optimal models were selected based on F1 scores, cohort sizes, calibration, and data availability for eventual deployment. A generalizable created at the development site was assessed at an external validation site and optimized with spline recalibration. Correlation was assessed between development site model predictions and measurements of brain biomarkers from a convenience cohort. Results After exclusions there were 14,222-25,171 encounters from 2010-2022 in the development site cohorts and 6,280-6,373 from 2018-2021 in the validation site cohort. At the development site, an extreme gradient boosted model (XGBoost) with a 12-hour time horizon and 48-hour feature engineering window had an F1-score of 0.54, area under the receiver operating characteristics curve (AUROC) of 0.82, and a number needed to alert (NNA) of 2. A generalizable XGBoost model with a 24-hour time horizon and 48-hour feature engineering window demonstrated an F1-score of 0.37, AUROC of 0.81, AUPRC of 0.51, and NNA of 4 at the validation site. After recalibration at the validation site, the Brier score was 0.04. Serum levels of the brain injury biomarker glial fibrillary acidic protein measurements significantly correlated with model output (rs=0.34; P=0.007). Conclusions and Relevance We demonstrate a well-performing ensemble of models for predicting neurologic morbidity in children with biomolecular corroboration. Prospective assessment and refinement of biomarker-coupled risk models in pediatric critical illness is warranted.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was funded by: NINDS R01NS118716 and NLM 5T15LM007059-38.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Institutional Review Board of the University of Pittsburgh name gave ethical approval for this work

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

De-identified versions of data produced in the present study are available upon reasonable request to the authors.

留言 (0)

沒有登入
gif