Construction of novel π-bridged fluorescent probes for Fe2+ monitoring in living cells and foods

Marsidi N, Hasan HA, Abdullah SRS. A review of biological aerated filters for iron and manganese ions removal in water treatment. J Water Process Eng. 2018;23:1–12. https://doi.org/10.1016/j.jwpe.2018.01.010.

Article  Google Scholar 

Zhang J, Song Y, Li Y, Lin HB, Fang X. Iron homeostasis in the heart: molecular mechanisms and pharmacological implications. J Mol Cell Cardiol. 2023;174:15–24. https://doi.org/10.1016/j.yjmcc.2022.11.001.

Article  PubMed  CAS  Google Scholar 

Aron AT, Reeves AG, Chang CJ. Activity-based sensing fluorescent probes for iron in biological systems. Curr Opin Chem Biol. 2018;43:113–8. https://doi.org/10.1016/j.cbpa.2017.12.010.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tong WH, Rouault T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19(21):5692–700. https://doi.org/10.1093/emboj/19.21.5692.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Santhoshkumar S, Velmurugan K, Prabhu J, Radhakrishnan G, Nandhakumar R. A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorg Chim Acta. 2016;439:1–7. https://doi.org/10.1016/j.ica.2015.09.030.

Article  CAS  Google Scholar 

Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015;33:8–13. https://doi.org/10.1016/j.ceb.2014.09.010.

Article  PubMed  CAS  Google Scholar 

Yun L, Cheng X. Synthesis of fluorescent probes based on cellulose for Fe2+ recognition. Cellulose. 2023;30(2):933–51. https://doi.org/10.1007/s10570-022-04930-x.

Article  CAS  Google Scholar 

Videla LA, Valenzuela R. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. BioFactors. 2022;48(2):400–15. https://doi.org/10.1002/biof.1797.

Article  PubMed  CAS  Google Scholar 

Chan LSA, Gu LC, Rauh MJ, Wells RA. Iron overload accelerates development of leukaemia: evidence from a mouse model. Blood. 2010;116(21):122. https://doi.org/10.1182/blood.V116.21.122.122.

Article  Google Scholar 

Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–73. https://doi.org/10.1038/nrn1537.

Article  PubMed  CAS  Google Scholar 

Huang X. Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res Fundam Mol Mech Mutagen. 2003;533(1–2):153–71. https://doi.org/10.1016/j.mrfmmm.2003.08.023.

Article  CAS  Google Scholar 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79. https://doi.org/10.1038/cdd.2015.158.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Briguglio M, Hrelia S, Malaguti M, Lombardi G, Riso P, Porrini M, Banfi G. The central role of iron in human nutrition: from folk to contemporary medicine. Nutrients. 2020;12(6):1761. https://doi.org/10.3390/nu12061761.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang L, Wang L, Lin L, Peng Z, Lu G. Polarographic determination of total iron content using a Fe2+/3+- methyl thymol blue-NO2-system. Anal Sci. 2004;20(12):1655–9. https://doi.org/10.2116/analsci.20.1655.

Article  PubMed  CAS  Google Scholar 

Sandiningtyas RD, Suendo V, Isolation of chlorophyll a from spinach and its modification using Fe2+ in photostability study. In: Proceedings of the Third International Conference on Mathematics and Natural Sciences. 2010; 859–873.

Celus M, Kyomugasho C, Kermani ZJ, Roggen K, Van Loey AM, Grauwet T, Hendrickx ME. Fe2+ adsorption on citrus pectin is influenced by the degree and pattern of methylesterification. Food Hydrocolloids. 2017;73:101–9. https://doi.org/10.1016/j.foodhyd.2017.06.021.

Article  CAS  Google Scholar 

Danilewicz JC. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am J Enol Vitic. 2003;54(2):73–85. https://doi.org/10.5344/ajev.2003.54.2.73.

Article  CAS  Google Scholar 

Mirlohi S, Dietrich AM, Duncan SE. Age-associated variation in sensory perception of iron in drinking water and the potential for overexposure in the human population. Environ Sci Technol. 2011;45(15):6575–83. https://doi.org/10.1021/es200633p.

Article  PubMed  CAS  Google Scholar 

Mierczyńska J, Cybulska J, Sołowiej B, Zdunek A. Effect of Ca2+, Fe2+ and Mg2+ on rheological properties of new food matrix made of modified cell wall polysaccharides from apple. Carbohyd Polym. 2015;133:547–55. https://doi.org/10.1016/j.carbpol.2015.07.046.

Article  CAS  Google Scholar 

Bag H, Türker AR, Tunçeli A, Lale M. Determination of Fe (II) and Fe (III) in water by flame atomic absorption spectrophotometry after their separation with Aspergillus niger immobilized on sepiolite. Anal Sci. 2001;17(7):901–4. https://doi.org/10.2116/analsci.17.901.

Article  PubMed  CAS  Google Scholar 

Hu Q. Simultaneous separation and quantification of iron and transition species using LC-ICP-MS. Am J Anal Chem. 2011;2(06):675. https://doi.org/10.4236/ajac.2011.2.

Article  CAS  Google Scholar 

Qu Z, Li P, Zhang X, Han K. A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells. J Mater Chem B. 2016;4(5):887–92. https://doi.org/10.1039/C5TB02090E.

Article  PubMed  CAS  Google Scholar 

Liang ZQ, Wang CX, Yang JX, Gao HW, Tian YP, Tao XT, Jiang MH. A highly selective colorimetric chemosensor for detecting the respective amounts of iron (II) and iron (III) ions in water. New J Chem. 2007;31(6):906–10. https://doi.org/10.1039/B701201M.

Article  CAS  Google Scholar 

Cheng Y, Shabir G, Li X, Fang L, Xu L, Zhang H, Li E. Development of a deep-red fluorescent glucose-conjugated bioprobe for in vivo tumor targeting. Chem Commun. 2020;56(7):1070–3. https://doi.org/10.1039/C9CC07363A.

Article  CAS  Google Scholar 

Tian X, Murfin LC, Wu L, Lewis SE, James TD. Fluorescent small organic probes for biosensing. Chem Sci. 2021;12(10):3406–26. https://doi.org/10.1039/D0SC06928K.

Article  PubMed  CAS  Google Scholar 

Ma S, Fang DC, Ning B, Li M, He L, Gong B. The rational design of a highly sensitive and selective fluorogenic probe for detecting nitric oxide. Chem Commun. 2014;50(49):6475–8. https://doi.org/10.1039/C4CC01142B.

Article  CAS  Google Scholar 

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164.

PubMed  Google Scholar 

Hirayama T, Niwa M, Hirosawa S, Nagasawa H. High-throughput screening for the discovery of iron homeostasis modulators using an extremely sensitive fluorescent probe. ACS Sensors. 2020;5(9):2950–8. https://doi.org/10.1021/acssensors.0c01445.

Article  PubMed  CAS  Google Scholar 

Khatun S, Biswas S, Binoy A, Podder A, Mishra N, Bhuniya S. Highly chemoselective turn-on fluorescent probe for ferrous (Fe2+) ion detection in cosmetics and live cells. J Photochem Photobiol B. 2020;209:111943. https://doi.org/10.1016/j.jphotobiol.2020.111943.

Article  PubMed  CAS  Google Scholar 

Xuan W, Pan R, Wei Y, Cao Y, Li H, Liang FS, Wang W. Reaction-based “off–on” fluorescent probe enabling detection of endogenous labile Fe2+ and imaging of Zn2+-induced Fe2+ flux in living cells and elevated Fe2+ in ischemic stroke. Bioconjug Chem. 2016;27(2):302–8. https://doi.org/10.1021/acs.bioconjchem.5b00259.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif