A shifted ratio spectrum strategy for effective subtraction of fluorescence interference in Raman spectra

Huang L, Sun H, Sun L, Shi K, Chen Y, Ren X, Ge Y, Jiang D, Liu X, Knoll W, Zhang Q, Wang Y. Rapid, label-free histopathological diagnosis of liver cancer based on Raman spectroscopy and deep learning. Nat Commun. 2023;14(1). https://doi.org/10.1038/s41467-022-35696-2.

Abramczyk H, Brozek-Pluska B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem Rev. 2013;113(8):5766–81. https://doi.org/10.1021/cr300147r.

Article  PubMed  CAS  Google Scholar 

Wang Z, Lin W, Luo C, Xue H, Wang T, Hu J, Huang Z, Fu D. Early diagnosis of thyroid-associated ophthalmopathy using label-free Raman spectroscopy and multivariate analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2024;310. https://doi.org/10.1016/j.saa.2024.123905.

Chang C, Liu H, Chen C, Wu L, Lv X, Xie X, Chen C. Rapid diagnosis of systemic lupus erythematosus by Raman spectroscopy combined with spiking neural network. Spectrochim Acta A Mol Biomol Spectrosc. 2024;310. https://doi.org/10.1016/j.saa.2024.123904.

Zhang C, Tan JB, Du BQ, Ji C, Pei ZY, Shao MR, Jiang SZ, Zhao XF, Yu J, Man BY, Li Z, Xu KC. Reversible thermoelectric regulation of electromagnetic and chemical enhancement for rapid SERS detection. ACS Appl Mater Interfaces. 2024;16(9):12085–94. https://doi.org/10.1021/acsami.3c18409.

Article  PubMed  CAS  Google Scholar 

Liu YH, Qiao SD, Fang C, He Y, Sun HY, Liu J, Ma YF. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv. 2024;7(3):230230-230230. ARTN 230230. https://doi.org/10.29026/oea.2024.230230.

Nilghaz A, Mahdi Mousavi S, Amiri A, Tian J, Cao R, Wang X. Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis. J Agric Food Chem. 2022;70(18):5463–76. https://doi.org/10.1021/acs.jafc.2c00089.

Article  PubMed  CAS  Google Scholar 

Zou M-Q, Zhang X-F, Qi X-H, Ma H-L, Dong Y, Liu C-W, Guo X, Wang H. Rapid authentication of olive oil adulteration by Raman spectrometry. J Agric Food Chem. 2009;57(14):6001–6. https://doi.org/10.1021/jf900217s.

Article  PubMed  CAS  Google Scholar 

Sharma SK, Porter JN, Misra AK, Acosta-Maeda TE, Angel SM, McKay CP. Standoff Raman spectroscopy for future Europa Lander missions. J Raman Spectrosc. 2020;51(9):1782–93. https://doi.org/10.1002/jrs.5814.

Article  CAS  Google Scholar 

Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong KY, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed EJ, Zhang X. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature. 2017;550(7677):487–91. https://doi.org/10.1038/nature24043.

Article  PubMed  CAS  Google Scholar 

Carroll JA, Izake EL, Cletus B, Jaatinen E. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field. J Raman Spectrosc. 2015;46(3):333–8. https://doi.org/10.1002/jrs.4642.

Article  CAS  Google Scholar 

Hao R, Zhao J, Liu J, You H, Fang J. Remote Raman detection of trace explosives by laser beam focusing and plasmonic spray enhancement methods. Anal Chem. 2022;94(32):11230–7. https://doi.org/10.1021/acs.analchem.2c01732.

Article  PubMed  CAS  Google Scholar 

Wang X, Zhen G, Hao X, Tong T, Ni F, Wang Z, Jia J, Li L, Tong H. Spectroscopic investigation and comprehensive analysis of the polychrome clay sculpture of Hua Yan Temple of the Liao Dynasty. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240. https://doi.org/10.1016/j.saa.2020.118574.

Li W, Wu S, Zhang H, Zhang X, Zhuang J, Hu C, Liu Y, Lei B, Ma L, Wang X. Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots. Adv Funct Mater. 2018;28(44). https://doi.org/10.1002/adfm.201804004.

Esmonde-White KA, Cuellar M, Lewis IR. The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. Anal Bioanal Chem. 2021;414(2):969–91. https://doi.org/10.1007/s00216-021-03727-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tatarkovic M, Synytsya A, Stovickova L, Bunganic B, Miskovicová M, Petruzelka L, Setnicka V. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma. Anal Bioanal Chem. 2015;407(5):1335–42. https://doi.org/10.1007/s00216-014-8358-7.

Article  PubMed  CAS  Google Scholar 

Bahreini M, Hosseinzadegan A, Rashidi A, Miri SR, Mirzaei HR, Hajian P. A Raman-based serum constituents’ analysis for gastric cancer diagnosis: in vitro study. Talanta. 2019;204:826–32. https://doi.org/10.1016/j.talanta.2019.06.068.

Article  PubMed  CAS  Google Scholar 

Bonnier F, Ali SM, Knief P, Lambkin H, Flynn K, McDonagh V, Healy C, Lee TC, Lyng FM, Byrne HJ. Analysis of human skin tissue by Raman microspectroscopy: dealing with the background. Vib Spectrosc. 2012;61:124–32. https://doi.org/10.1016/j.vibspec.2012.03.009.

Article  CAS  Google Scholar 

Rojalin T, Kurki L, Laaksonen T, Viitala T, Kostamovaara J, Gordon KC, Galvis L, Wachsmann-Hogiu S, Strachan CJ, Yliperttula M. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector. Anal Bioanal Chem. 2016;408(3):761–74. https://doi.org/10.1007/s00216-015-9156-6.

Article  PubMed  CAS  Google Scholar 

Wang HQ, Zhao JH, Lee AMD, Lui H, Zeng HS. Improving skin Raman spectral quality by fluorescence photobleaching. Photodiagnosis Photodyn Ther. 2012;9(4):299–302. https://doi.org/10.1016/j.pdpdt.2012.02.001.

Article  PubMed  CAS  Google Scholar 

Matousek P, Towrie M, Parker AW. Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques. J Raman Spectrosc. 2002;33(4):238–42. https://doi.org/10.1002/jrs.840.

Article  CAS  Google Scholar 

Le Ru EC, Schroeter LC, Etchegoin PG. Direct measurement of resonance Raman spectra and cross sections by a polarization difference technique. Anal Chem. 2012;84(11):5074–9. https://doi.org/10.1021/ac300763q.

Article  PubMed  CAS  Google Scholar 

Cloutis E, Szymanski P, Applin D, Goltz D. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy. Icar. 2016;274:211–30. https://doi.org/10.1016/j.icarus.2016.03.023.

Article  CAS  Google Scholar 

Kaszowska Z, Malek K, Staniszewska-Slezak E, Niedzielska K. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochim Acta A Mol Biomol Spectrosc. 2016;169:7–15. https://doi.org/10.1016/j.saa.2016.06.012.

Article  PubMed  CAS  Google Scholar 

Zhao J, Carrabba MM, Allen FS. Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. Appl Spectrosc. 2002;56(7):834–45. https://doi.org/10.1366/000370202760171491.

Article  CAS  Google Scholar 

De Luca AC, Mazilu M, Riches A, Herrington CS, Dholakia K. Online fluorescence suppression in modulated Raman spectroscopy. Anal Chem. 2009;82(2):738–45. https://doi.org/10.1021/ac9026737.

Article  CAS  Google Scholar 

Gebrekidan MT, Knipfer C, Stelzle F, Popp J, Will S, Braeuer A. A shifted-excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference. J Raman Spectrosc. 2016;47(2):198–209. https://doi.org/10.1002/jrs.4775.

Article  CAS  Google Scholar 

Lin J, Lin D, Qiu S, Huang Z, Liu F, Huang W, Xu Y, Zhang X, Feng S. Shifted-excitation Raman difference spectroscopy for improving in vivo detection of nasopharyngeal carcinoma. Talanta. 2023;257. https://doi.org/10.1016/j.talanta.2023.124330.

Sowoidnich K, Maiwald M, Ostermann M, Sumpf B. Shifted excitation Raman difference spectroscopy for soil component identification and soil carbonate determination in the presence of strong fluorescence interference. J Raman Spectrosc. 2023;54(11):1327–40. https://doi.org/10.1002/jrs.6500.

Article  CAS  Google Scholar 

Mosier-Boss P, Lieberman S, Newbery R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Appl Spectrosc. 1995;49(5):630–8.

Article  CAS  Google Scholar 

Cai WS, Wang LY, Pan ZX, Zuo J, Xu CY, Shao XG. Application of the wavelet transform method in quantitative analysis of Raman spectra. J Raman Spectrosc. 2001;32(3):207–9. https://doi.org/10.1002/jrs.688.

Article  CAS  Google Scholar 

Tan HW, Brown SD. Wavelet analysis applied to removing non-constant, varying spectroscopic background in multivariate calibration. J Chemom. 2002;16(5):228–40. https://doi.org/10.1002/cem.717.

Article  CAS  Google Scholar 

Lieber CA, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc. 2003;57(11):1363–7. https://doi.org/10.1366/000370203322554518.

Article  PubMed  CAS  Google Scholar 

Cao A, Pandya AK, Serhatkulu GK, Weber RE, Dai H, Thakur JS, Naik VM, Naik R, Auner GW, Rabah R, Freeman DC. A robust method for automated background subtraction of tissue fluorescence. J Raman Spectrosc. 2007;38(9):1199–205. https://doi.org/10.1002/jrs.1753.

Article 

留言 (0)

沒有登入
gif