Deveau MA, Bowen SR, Westerly DC, Jeraj R (2010) Feasibility and sensitivity study of helical tomotherapy for dose painting plans. Acta Oncol 49:991–996. https://doi.org/10.3109/0284186x.2010.500302
Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G et al (2021) FLASH Radiotherapy: History and Future. Front Oncol 11:644400. https://doi.org/10.3389/fonc.2021.644400
Article PubMed PubMed Central CAS Google Scholar
Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J et al (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20:1709–1719. https://doi.org/10.1118/1.596958
Article PubMed CAS Google Scholar
Shi M, Chuang CF, Kovalchuk N, Bush K, Zaks D, Xing L et al (2021) Small-field measurement and Monte Carlo model validation of a novel image-guided radiotherapy system. Med Phys 48:7450–7460. https://doi.org/10.1002/mp.15273
Article PubMed CAS Google Scholar
Munshi A, Sarkar B, Paul S, Chaudhari BB, Chauhan RS, Ganesh T et al (2021) A mathematical formulation for volume expansions in contouring for radiotherapy planning. J Cancer Res Ther 17:1125–1131. https://doi.org/10.4103/jcrt.jcrt_614_19
Finnegan RN, Reynolds HM, Ebert MA, Sun Y, Holloway L, Sykes JR et al (2022) A statistical, voxelised model of prostate cancer for biologically optimised radiotherapy. Phys Imaging Radiat Oncol 21:136–145. https://doi.org/10.1016/j.phro.2022.02.011
Article PubMed PubMed Central Google Scholar
Farayola MF, Shafie S, Siam FM, Khan I (2020) Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative. Comput Methods Programs Biomed 188:105306. https://doi.org/10.1016/j.cmpb.2019.105306
Enderling H, Alfonso JCL, Moros E, Caudell JJ, Harrison LB (2019) Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy. Trends Cancer 5:467–474. https://doi.org/10.1016/j.trecan.2019.06.006
Yang J, Wei C, Zhang L, Zhang Y, Blum RS, Dong L (2012) A statistical modeling approach for evaluating auto-segmentation methods for image-guided radiotherapy. Comput Med Imaging Graph 36:492–500. https://doi.org/10.1016/j.compmedimag.2012.05.001
Article PubMed PubMed Central Google Scholar
Hong WS, Wang SG, Zhang GQ (2021) Lung Cancer Radiotherapy: Simulation and Analysis Based on a Multicomponent Mathematical Model. Comput Math Methods Med 2021:6640051. https://doi.org/10.1155/2021/6640051
Article PubMed PubMed Central Google Scholar
Yousefi A, Ketabi S, Abedi I (2023) A novel mathematical model to generate semi-automated optimal IMRT treatment plan based on predicted 3D dose distribution and prescribed dose. Med Phys. https://doi.org/10.1002/mp.16236
Chatterjee S, Chaudhuri R, Vrontis D, Papadopoulos T (2022) Examining the impact of deep learning technology capability on manufacturing firms: moderating roles of technology turbulence and top management support. Ann Oper Res. https://doi.org/10.1007/s10479-021-04505-2
Article PubMed PubMed Central Google Scholar
Hou Y (2020) Breast cancer pathological image classification based on deep learning. J Xray Sci Technol 28:727–738. https://doi.org/10.3233/xst-200658
Chan HP, Samala RK, Hadjiiski LM, Zhou C (2020) Deep Learning in Medical Image Analysis. Adv Exp Med Biol 1213:3–21. https://doi.org/10.1007/978-3-030-33128-3_1
Article PubMed PubMed Central Google Scholar
Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z et al (2019) A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep 9:1076. https://doi.org/10.1038/s41598-018-37741-x
Article PubMed PubMed Central CAS Google Scholar
Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y (2019) Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol 64:125017. https://doi.org/10.1088/1361-6560/ab2146
Kummanee P, Chancharoen W, Tangtisanon K, Fuangrod T (2021) Predicting Three-Dimensional Dose Distribution of Prostate Volumetric Modulated Arc Therapy Using Deep. Learn Life. https://doi.org/10.3390/life11121305
Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S et al (2019) A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res 60:685–693. https://doi.org/10.1093/jrr/rrz051
Article PubMed PubMed Central Google Scholar
Pal A, Rathi Y (2022) A review and experimental evaluation of deep learning methods for MRI reconstruction. J Mach Learn Biomed Imaging 1:001
Article PubMed PubMed Central Google Scholar
Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226
Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H et al (2019) 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U‑net deep learning architecture. Phys Med Biol 64:65020. https://doi.org/10.1088/1361-6560/ab039b
Liu Z, Chen X, Men K, Yi J, Dai J (2020) A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans. Med Phys 47:5467–5481. https://doi.org/10.1002/mp.14394
Lee H, Kim H, Kwak J, Kim YS, Lee SW, Cho S et al (2019) Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network. Sci Rep 9:15671. https://doi.org/10.1038/s41598-019-52262-x
Article PubMed PubMed Central CAS Google Scholar
Ronneberger O, Fischer P, Brox T (eds) (2015) U‑net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer https://doi.org/10.1007/978-3-319-24574-4_28
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: A Nested U‑Net Architecture for Medical Image Segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 11045:3–11. https://doi.org/10.1007/978-3-030-00889-5_1 (2018)
Nguyen V, Bodenreider O (2022) Adding an Attention Layer Improves the Performance of a Neural Network Architecture for Synonymy Prediction in the UMLS Metathesaurus. Stud Health Technol Inform 290:116–119. https://doi.org/10.3233/shti220043
Article PubMed PubMed Central Google Scholar
Hong JS, Tzeng YH, Yin WH, Wu KT, Hsu HY, Lu CF et al (2022) Automated coronary artery calcium scoring using nested U‑Net and focal loss. Comput Struct Biotechnol J 20:1681–1690. https://doi.org/10.1016/j.csbj.2022.03.025
Article PubMed PubMed Central CAS Google Scholar
Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K et al (2017) Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys 44:5234–5243. https://doi.org/10.1002/mp.12481
Article PubMed PubMed Central Google Scholar
Kido S, Kidera S, Hirano Y, Mabu S, Kamiya T, Tanaka N et al (2022) Segmentation of Lung Nodules on CT Images Using a Nested Three-Dimensional Fully Connected Convolutional Network. Front Artif Intell. https://doi.org/10.3389/frai.2022.782225
留言 (0)