Nested CNN architecture for three-dimensional dose distribution prediction in tomotherapy for prostate cancer

Deveau MA, Bowen SR, Westerly DC, Jeraj R (2010) Feasibility and sensitivity study of helical tomotherapy for dose painting plans. Acta Oncol 49:991–996. https://doi.org/10.3109/0284186x.2010.500302

Article  PubMed  Google Scholar 

Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G et al (2021) FLASH Radiotherapy: History and Future. Front Oncol 11:644400. https://doi.org/10.3389/fonc.2021.644400

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J et al (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20:1709–1719. https://doi.org/10.1118/1.596958

Article  PubMed  CAS  Google Scholar 

Shi M, Chuang CF, Kovalchuk N, Bush K, Zaks D, Xing L et al (2021) Small-field measurement and Monte Carlo model validation of a novel image-guided radiotherapy system. Med Phys 48:7450–7460. https://doi.org/10.1002/mp.15273

Article  PubMed  CAS  Google Scholar 

Munshi A, Sarkar B, Paul S, Chaudhari BB, Chauhan RS, Ganesh T et al (2021) A mathematical formulation for volume expansions in contouring for radiotherapy planning. J Cancer Res Ther 17:1125–1131. https://doi.org/10.4103/jcrt.jcrt_614_19

Article  PubMed  Google Scholar 

Finnegan RN, Reynolds HM, Ebert MA, Sun Y, Holloway L, Sykes JR et al (2022) A statistical, voxelised model of prostate cancer for biologically optimised radiotherapy. Phys Imaging Radiat Oncol 21:136–145. https://doi.org/10.1016/j.phro.2022.02.011

Article  PubMed  PubMed Central  Google Scholar 

Farayola MF, Shafie S, Siam FM, Khan I (2020) Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative. Comput Methods Programs Biomed 188:105306. https://doi.org/10.1016/j.cmpb.2019.105306

Article  PubMed  Google Scholar 

Enderling H, Alfonso JCL, Moros E, Caudell JJ, Harrison LB (2019) Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy. Trends Cancer 5:467–474. https://doi.org/10.1016/j.trecan.2019.06.006

Article  PubMed  Google Scholar 

Yang J, Wei C, Zhang L, Zhang Y, Blum RS, Dong L (2012) A statistical modeling approach for evaluating auto-segmentation methods for image-guided radiotherapy. Comput Med Imaging Graph 36:492–500. https://doi.org/10.1016/j.compmedimag.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Hong WS, Wang SG, Zhang GQ (2021) Lung Cancer Radiotherapy: Simulation and Analysis Based on a Multicomponent Mathematical Model. Comput Math Methods Med 2021:6640051. https://doi.org/10.1155/2021/6640051

Article  PubMed  PubMed Central  Google Scholar 

Yousefi A, Ketabi S, Abedi I (2023) A novel mathematical model to generate semi-automated optimal IMRT treatment plan based on predicted 3D dose distribution and prescribed dose. Med Phys. https://doi.org/10.1002/mp.16236

Article  PubMed  Google Scholar 

Chatterjee S, Chaudhuri R, Vrontis D, Papadopoulos T (2022) Examining the impact of deep learning technology capability on manufacturing firms: moderating roles of technology turbulence and top management support. Ann Oper Res. https://doi.org/10.1007/s10479-021-04505-2

Article  PubMed  PubMed Central  Google Scholar 

Hou Y (2020) Breast cancer pathological image classification based on deep learning. J Xray Sci Technol 28:727–738. https://doi.org/10.3233/xst-200658

Article  PubMed  Google Scholar 

Chan HP, Samala RK, Hadjiiski LM, Zhou C (2020) Deep Learning in Medical Image Analysis. Adv Exp Med Biol 1213:3–21. https://doi.org/10.1007/978-3-030-33128-3_1

Article  PubMed  PubMed Central  Google Scholar 

Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z et al (2019) A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep 9:1076. https://doi.org/10.1038/s41598-018-37741-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y (2019) Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol 64:125017. https://doi.org/10.1088/1361-6560/ab2146

Article  PubMed  Google Scholar 

Kummanee P, Chancharoen W, Tangtisanon K, Fuangrod T (2021) Predicting Three-Dimensional Dose Distribution of Prostate Volumetric Modulated Arc Therapy Using Deep. Learn Life. https://doi.org/10.3390/life11121305

Article  PubMed  Google Scholar 

Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S et al (2019) A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res 60:685–693. https://doi.org/10.1093/jrr/rrz051

Article  PubMed  PubMed Central  Google Scholar 

Pal A, Rathi Y (2022) A review and experimental evaluation of deep learning methods for MRI reconstruction. J Mach Learn Biomed Imaging 1:001

Article  PubMed  PubMed Central  Google Scholar 

Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226

Article  PubMed  Google Scholar 

Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H et al (2019) 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U‑net deep learning architecture. Phys Med Biol 64:65020. https://doi.org/10.1088/1361-6560/ab039b

Article  PubMed  Google Scholar 

Liu Z, Chen X, Men K, Yi J, Dai J (2020) A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans. Med Phys 47:5467–5481. https://doi.org/10.1002/mp.14394

Article  PubMed  Google Scholar 

Lee H, Kim H, Kwak J, Kim YS, Lee SW, Cho S et al (2019) Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network. Sci Rep 9:15671. https://doi.org/10.1038/s41598-019-52262-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ronneberger O, Fischer P, Brox T (eds) (2015) U‑net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention. Springer https://doi.org/10.1007/978-3-319-24574-4_28

Book  Google Scholar 

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: A Nested U‑Net Architecture for Medical Image Segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 11045:3–11. https://doi.org/10.1007/978-3-030-00889-5_1 (2018)

Article  Google Scholar 

Nguyen V, Bodenreider O (2022) Adding an Attention Layer Improves the Performance of a Neural Network Architecture for Synonymy Prediction in the UMLS Metathesaurus. Stud Health Technol Inform 290:116–119. https://doi.org/10.3233/shti220043

Article  PubMed  PubMed Central  Google Scholar 

Hong JS, Tzeng YH, Yin WH, Wu KT, Hsu HY, Lu CF et al (2022) Automated coronary artery calcium scoring using nested U‑Net and focal loss. Comput Struct Biotechnol J 20:1681–1690. https://doi.org/10.1016/j.csbj.2022.03.025

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhuge Y, Krauze AV, Ning H, Cheng JY, Arora BC, Camphausen K et al (2017) Brain tumor segmentation using holistically nested neural networks in MRI images. Med Phys 44:5234–5243. https://doi.org/10.1002/mp.12481

Article  PubMed  PubMed Central  Google Scholar 

Kido S, Kidera S, Hirano Y, Mabu S, Kamiya T, Tanaka N et al (2022) Segmentation of Lung Nodules on CT Images Using a Nested Three-Dimensional Fully Connected Convolutional Network. Front Artif Intell. https://doi.org/10.3389/frai.2022.782225

Article  PubMed 

留言 (0)

沒有登入
gif