Accurate Machine Learning-based Monitoring of Anesthesia Depth with EEG Recording

Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: A prospective case study. Lancet 2000, 355: 707–711.

Article  CAS  PubMed  Google Scholar 

Davidson AJ, Smith KR, Blussé van Oud-Alblas HJ, Lopez U, Malviya S, Bannister CF, et al. Awareness in children: A secondary analysis of five cohort studies. Anaesthesia 2011, 66: 446–454.

Myles PS. Prevention of awareness during anaesthesia. Best Pract Res Clin Anaesthesiol 2007, 21: 345–355.

Article  PubMed  Google Scholar 

Evered LA, Chan MTV, Han R, Chu MHM, Cheng BP, Scott DA. Anaesthetic depth and delirium after major surgery: A randomised clinical trial. Br J Anaesth 2021, 127: 704–712.

Article  PubMed  PubMed Central  Google Scholar 

Huang WK, Lian WY, Zhuo XY, Kang SY, Luo WC, Xie YS, et al. Association between cumulative duration of deep anesthesia and postoperative acute kidney injury after noncardiac surgeries: A retrospective observational study. Ren Fail 2023, 45: 2287130.

Article  PubMed  PubMed Central  Google Scholar 

Ma ZM, Hu JH, Ying YY, Chen X, Xu JY, Huo WW, et al. Effect of remimazolam on electroencephalogram burst suppression in elderly patients undergoing cardiac surgery: Protocol for a randomized controlled noninferiority trial. Heliyon 2024, 10: e23879.

Article  PubMed  Google Scholar 

Eagleman SL, Drover DR. Calculations of consciousness: Electroencephalography analyses to determine anesthetic depth. Curr Opin Anaesthesiol 2018, 31: 431–438.

Article  PubMed  Google Scholar 

Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: Part I: Background and basic signatures. Anesthesiology 2015, 123: 937–960.

Article  CAS  PubMed  Google Scholar 

Akeju O, Pavone KJ, Westover MB, Vazquez R, Prerau MJ, Harrell PG, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology 2014, 121: 978–989.

Article  CAS  PubMed  Google Scholar 

Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 1994, 10: 392–404.

Article  CAS  PubMed  Google Scholar 

Gruenewald M, Zhou J, Schloemerkemper N, Meybohm P, Weiler N, Tonner PH, et al. M-Entropy guidance vs standard practice during propofol-remifentanil anaesthesia: A randomised controlled trial. Anaesthesia 2007, 62: 1224–1229.

Article  CAS  PubMed  Google Scholar 

Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg 2018, 126: 111–117.

Article  PubMed  Google Scholar 

Hajat Z, Ahmad N, Andrzejowski J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia 2017, 72: 38–47.

Article  PubMed  Google Scholar 

Laferrière-Langlois P, Morisson L, Jeffries S, Duclos C, Espitalier F, Richebé P. Depth of anesthesia and nociception monitoring: Current state and vision for 2050. Anesth Analg 2024, 138: 295–307.

Article  PubMed  Google Scholar 

Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. Elife 2015, 4: e06513.

Article  PubMed  PubMed Central  Google Scholar 

Voss L, Sleigh J. Monitoring consciousness: The Current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol 2007, 21: 313–325.

Article  PubMed  Google Scholar 

Schuller PJ, Newell S, Strickland PA, Barry JJ. Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth 2015, 115: i95–i103.

Article  PubMed  Google Scholar 

Liu Q, Ma L, Fan SZ, Abbod MF, Shieh JS. Sample entropy analysis for the estimating depth of anaesthesia through human EEG signal at different levels of unconsciousness during surgeries. PeerJ 2018, 6: e4817.

Article  PubMed  PubMed Central  Google Scholar 

Nagaraj SB, McClain LM, Boyle EJ, Zhou DW, Ramaswamy SM, Biswal S, et al. Electroencephalogram based detection of deep sedation in ICU patients using atomic decomposition. IEEE Trans Biomed Eng 2018, 65: 2684–2691.

Article  PubMed  PubMed Central  Google Scholar 

Ha U, Lee J, Kim M, Roh T, Choi S, Yoo HJ. An EEG-NIRS multimodal SoC for accurate anesthesia depth monitoring. IEEE J Solid State Circuits 2018, 53: 1830–1843.

Article  Google Scholar 

Gu Y, Liang Z, Hagihira S. Use of multiple EEG features and artificial neural network to monitor the depth of anesthesia. Sensors 2019, 19: 2499.

Article  PubMed  PubMed Central  Google Scholar 

Saadeh W, Khan FH, Bin Altaf MA. Design and implementation of a machine learning based EEG processor for accurate estimation of depth of anesthesia. IEEE Trans Biomed Circuits Syst 2019, 13: 658–669.

Article  PubMed  Google Scholar 

Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noirhomme Q, et al. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J Neurosci 2012, 32: 7082–7090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ku SW, Lee U, Noh GJ, Jun IG, Mashour GA. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One 2011, 6: e25155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordan D, Ilg R, Riedl V, Schorer A, Grimberg S, Neufang S, et al. Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology 2013, 119: 1031–1042.

Article  PubMed  Google Scholar 

Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010, 113: 1038–1053.

Article  CAS  PubMed  Google Scholar 

Zhai YY, Auksztulewicz R, Song PR, Sun ZH, Gong YM, Du XY, et al. Synaptic adaptation contributes to stimulus-specific adaptation in the thalamic reticular nucleus. Neurosci Bull 2020, 36: 1538–1541.

Article  PubMed  PubMed Central  Google Scholar 

Gong Y, Zhai Y, Du X, Song P, Xu H, Zhang Q, et al. Cross-modal interaction and integration through stimulus-specific adaptation in the thalamic reticular nucleus of rats. Neurosci Bull 2022, 38: 785–795.

Article  PubMed  PubMed Central  Google Scholar 

Rui YY, He J, Zhai YY, Sun ZH, Yu X. Frequency-dependent stimulus-specific adaptation and regularity sensitivity in the rat auditory thalamus. Neuroscience 2018, 392: 13–24.

Article  CAS  PubMed  Google Scholar 

Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134: 9–21.

Article  PubMed  Google Scholar 

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869.

Article  PubMed  Google Scholar 

Chen Y, Bao W, Liang X, Zhang J. Propofol anesthesia alters spatial and topologic organization of rat brain metabolism. Anesthesiology 2019, 131: 850–865.

Article  PubMed  Google Scholar 

Chen Y, Li S, Liang X, Zhang J. Differential alterations to the metabolic connectivity of the cortical and subcortical regions in rat brain during ketamine-induced unconsciousness. Anesth Analg 2022, 135: 1106–1114.

CAS  PubMed 

留言 (0)

沒有登入
gif