The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes

Koutsoukis A, et al. Cardio-oncology: a Focus on Cardiotoxicity. Eur Cardiol. 2018;13:64–9.

Article  PubMed  PubMed Central  Google Scholar 

Sheng CC, et al. 21st Century Cardio-Oncology: identifying Cardiac Safety signals in the era of Personalized Medicine. JACC Basic Transl Sci. 2016;1:386–98.

Article  PubMed  PubMed Central  Google Scholar 

Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708.

Article  PubMed  CAS  Google Scholar 

Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol. 2012;52:48–61.

Article  PubMed  CAS  Google Scholar 

Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001;61:771–7.

PubMed  CAS  Google Scholar 

Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol. 2020;29:101394.

Article  PubMed  CAS  Google Scholar 

Litvinukova M, et al. Cells of the adult human heart. Nature. 2020;588:466–72.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Ni C, et al. Doxorubicin-induced cardiotoxicity involves IFNgamma-mediated metabolic reprogramming in cardiomyocytes. J Pathol. 2019;247:320–32.

Article  PubMed  CAS  Google Scholar 

Jaenke RS. An anthracycline antibiotic-induced cardiomyopathy in rabbits. Lab Invest. 1974;30:292–304.

PubMed  CAS  Google Scholar 

Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12:339.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Minotti G, Cairo G, Monti E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB journal: official publication of the Federation of American Societies for Experimental Biology 13, 199–212 (1999).

Mak TW, Hauck L, Grothe D. Billia, p53 regulates the cardiac transcriptome. Proc Natl Acad Sci U S A. 2017;114:2331–6.

Article  PubMed  CAS  PubMed Central  Google Scholar 

McSweeney KM, Bozza WP, Alterovitz WL, Zhang B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discovery. 2019;5:102.

Article  PubMed  PubMed Central  Google Scholar 

Amgalan D, et al. A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nat Cancer. 2020;1:315–28.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Octavia Y, et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52:1213–25.

Article  PubMed  CAS  Google Scholar 

Simunek T, et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–71.

Article  PubMed  CAS  Google Scholar 

Qiu Z, Cang Y, Goff SP. c-Abl tyrosine kinase regulates cardiac growth and development. Proc Natl Acad Sci U S A. 2010;107:1136–41.

Article  PubMed  CAS  Google Scholar 

Agami R, Blandino G, Oren M, Shaul Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature. 1999;399:809–13.

Article  PubMed  CAS  Google Scholar 

Gong JG, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999;399:806–9.

Article  PubMed  CAS  Google Scholar 

Yuan ZM, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999;399:814–7.

Article  PubMed  CAS  Google Scholar 

Yuan ZM, et al. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature. 1996;382:272–4.

Article  PubMed  CAS  Google Scholar 

Yuan ZM, et al. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase. Proc Natl Acad Sci U S A. 1997;94:1437–40.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Levav-Cohen Y, et al. C-Abl as a modulator of p53. Biochem Biophys Res Commun. 2005;331:737–49.

Article  PubMed  CAS  Google Scholar 

Nie Y, Li HH, Bula CM, Liu X. Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization. Mol Cell Biol. 2000;20:741–8.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Goldberg Z, et al. Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J. 2002;21:3715–27.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Furlan A, Stagni V, Hussain A, Richelme S, Conti F, Prodosmo A, Destro A, Roncalli M, Barilà D, Maina F. Abl interconnects oncogenic Met and p53 core pathways in cancer cells. Cell Death Differ. 2011 Oct;18(10):1608–16. https://doi.org/10.1038/cdd.2011.23. Epub 2011 Apr 1. PMID: 21455220; PMCID: PMC3172114.

Gilpin DA. Calculation of a new Meeh constant and experimental determination of burn size. Burns. 1996;22:607–11.

Article  PubMed  CAS  Google Scholar 

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB Journal: Official Publication Federation Am Soc Experimental Biology. 2008;22:659–61.

Article  CAS  Google Scholar 

Gouma E, et al. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab Anim. 2012;46:40–5.

Article  PubMed  CAS  Google Scholar 

Arnold G, Kaiser C, Fischer R. Myofibrillar degeneration–a common type of myocardial lesion and its selective identification by a modified luxol fast blue stain. Pathol Res Pract. 1985;180:405–15.

Article  PubMed  CAS  Google Scholar 

Gebel S, et al. The kinetics of transcriptomic changes induced by cigarette smoke in rat lungs reveals a specific program of defense, inflammation, and circadian clock gene expression. Toxicol Sci. 2006;93:422–31.

Article  PubMed  CAS  Google Scholar 

Reymann S, Borlak J. Topoisomerase II inhibition involves characteristic chromosomal expression patterns. BMC Genomics. 2008;9:324.

Article  PubMed  PubMed Central  Google Scholar 

Del Vescovo V, Meier T, Inga A, Denti MA, Borlak J. A cross-platform comparison of Affymetrix and Agilent microarrays reveals discordant miRNA expression in lung tumors of c-Raf transgenic mice. PLoS ONE. 2013;8:e78870.

Article 

留言 (0)

沒有登入
gif