Evaluation of Drug–Drug Interaction Potential of Talquetamab, a T-Cell-Redirecting GPRC5D × CD3 Bispecific Antibody, as a Result of Cytokine Release Syndrome in Patients with Relapsed/Refractory Multiple Myeloma in MonumenTAL-1, Using a Physiologically Based Pharmacokinetic Model

Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallas S, Sensenhauser C, Batheja A, Singer M, Markowska M, Zakszewski C, et al. De-risking bio-therapeutics for possible drug interactions using cryopreserved human hepatocytes. Curr Drug Metab. 2012;13(7):923–9.

Article  CAS  PubMed  Google Scholar 

Lee JI, Zhang L, Men AY, Kenna LA, Huang SM. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.

Article  CAS  PubMed  Google Scholar 

Lei R, Arain H, Obaid M, Sabhnani N, Mohan C. Ultra-sensitive and semi-quantitative vertical flow assay for the rapid detection of interleukin-6 in inflammatory diseases. Biosensors (Basel). 2022;12(9):756.

Article  CAS  PubMed  Google Scholar 

Yu Y, Henrich C, Wang D. Assessment of the drug-drug interaction potential for therapeutic proteins with pro-inflammatory activities. Clin Transl Sci. 2023;16(6):922–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coutant DE, Boulton DW, Dahal UP, Deslandes A, Grimaldi C, Pereira JNS, et al. Therapeutic protein drug interactions: a white paper from the international consortium for innovation and quality in pharmaceutical development. Clin Pharmacol Ther. 2023;113(6):1185–98.

Article  CAS  PubMed  Google Scholar 

Evers R, Dallas S, Dickmann LJ, Fahmi OA, Kenny JR, Kraynov E, et al. Critical review of preclinical approaches to investigate cytochrome p450-mediated therapeutic protein drug–drug interactions and recommendations for best practices: a white paper. Drug Metab Dispos. 2013;41(9):1598–609.

Article  CAS  PubMed  Google Scholar 

Frye RF, Schneider VM, Frye CS, Feldman AM. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail. 2002;8(5):315–9.

Article  CAS  PubMed  Google Scholar 

Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011;89(5):735–40.

Article  CAS  PubMed  Google Scholar 

Zhuang Y, de Vries DE, Xu Z, Marciniak SJ Jr, Chen D, Leon F, et al. Evaluation of disease-mediated therapeutic protein–drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol. 2015;55(12):1386–94.

Article  CAS  PubMed  Google Scholar 

Sarosiek S, Shah R, Munshi NC. Review of siltuximab in the treatment of multicentric Castleman’s disease. Ther Adv Hematol. 2016;7(6):360–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

U.S. Department of Health and Human Services Food and Drug Administration. Drug–drug interaction assessment for therapeutic proteins: guidance for industry. Available from https://www.fda.gov/media/140909/download. Accessed 25 April 2024.

European Medicines Agency, Committee for Human Medicinal Products (CHMP). Guideline on the investigation of drug interactions. Available from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf. Accessed 25 April 2024.

Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

Article  CAS  PubMed  Google Scholar 

Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88–110.

Article  PubMed  PubMed Central  Google Scholar 

Haraya K, Tsutsui H, Komori Y, Tachibana T. Recent advances in translational pharmacokinetics and pharmacodynamics prediction of therapeutic antibodies using modeling and simulation. Pharmaceuticals (Basel). 2022;15(5):508.

Article  CAS  PubMed  Google Scholar 

Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically based pharmacokinetic modeling approach to predict disease–drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.

Article  CAS  PubMed  Google Scholar 

Wang L, Chen Y, Zhou W, Miao X, Zhou H. Utilization of physiologically-based pharmacokinetic model to assess disease-mediated therapeutic protein–disease–drug interaction in immune-mediated inflammatory diseases. Clin Transl Sci. 2022;15(2):464–76.

Article  CAS  PubMed  Google Scholar 

Stader F, Battegay M, Sendi P, Marzolini C. Physiologically based pharmacokinetic modelling to investigate the impact of the cytokine storm on CYP3A drug pharmacokinetics in COVID-19 patients. Clin Pharmacol Ther. 2022;111(3):579–84.

Article  CAS  PubMed  Google Scholar 

Jiang X, Zhuang Y, Xu Z, Wang W, Zhou H. Development of a physiologically based pharmacokinetic model to predict disease-mediated therapeutic protein–drug interactions: modulation of multiple cytochrome P450 enzymes by interleukin-6. AAPS J. 2016;18(3):767–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenoir C, Niederer A, Rollason V, Desmeules JA, Daali Y, Samer CF. Prediction of cytochromes P450 3A and 2C19 modulation by both inflammation and drug interactions using physiologically based pharmacokinetics. CPT Pharmacometr Syst Pharmacol. 2022;11(1):30–43.

Article  CAS  Google Scholar 

Pulte ED, Vallejo J, Przepiorka D, Nie L, Farrell AT, Goldberg KB, et al. FDA supplemental approval: blinatumomab for treatment of relapsed and refractory precursor B-cell acute lymphoblastic leukemia. Oncologist. 2018;23(11):1366–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Hijazi Y, Wolf A, Wu B, Sun YN, Zhu M. Physiologically based pharmacokinetic model to assess the influence of blinatumomab-mediated cytokine elevations on cytochrome P450 enzyme activity. CPT Pharmacometr Syst Pharmacol. 2015;4(9):507–15.

Article  CAS  Google Scholar 

Djebli N, Parrott N, Jaminion F, O’Jeanson A, Guerini E, Carlile D. Evaluation of the potential impact on pharmacokinetics of various cytochrome P450 substrates of increasing IL-6 levels following administration of the T-cell bispecific engager glofitamab. CPT Pharmacometr Syst Pharmacol. 2024;13(3):396–409.

Article  CAS  Google Scholar 

Chen Y, Ma F, Jones N, Deng R, Li C, Li CC. Assessment of CYP3A-mediated drug interaction via cytokine (IL-6) elevation for mosunetuzumab using physiologically-based pharmacokinetic modeling. CPT Pharmacometr Syst Pharmacol. 2024;13(2):234–46.

Article  Google Scholar 

Columvi™ (glofitamab-gxbm) prescribing information. Genentech, Inc.; 2023. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761309s000lbl.pdf. Accessed 19 March 2024.

Lunsumio™ (mosunetuzumab-axgb) prescribing information. Genentech, Inc.; 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761263s000lbl.pdf. Accessed 19 March 2024.

Tecvayli™ (teclistamab-cqyv) prescribing information. Janssen Biotech, Inc.; 2024. Available from https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/TECVAYLI-pi.pdf. Accessed 2 May 2024.

European Medicines Agency. Tecvayli™ (teclistamab). Summary of product characteristics. Available from https://www.ema.europa.eu/en/documents/product-information/tecvayli-epar-product-information_en.pdf. Accessed 2 May 2024.

Willemin E-M, Ling SXW, De Zwart L, Wu LS, Miao X, Verona R, et al. Evaluating drug interaction potential from cytokine release syndrome using a physiologically based pharmacokinetic model: a case study of teclistamab. CPT Pharmacometr Syst Pharmacol. 2024;13(7):1117–29.

Article  CAS  Google Scholar 

Verkleij CPM, Broekmans MEC, van Duin M, Frerichs KA, Kuiper R, de Jonge AV, et al. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv. 2021;5(8):2196–215.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Talvey™ (talquetamab-tgvs) prescribing information. Janssen Biotech; 2023. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761342s000lbl.pdf. Accessed 29 November 2024.

European Medicines Agency. Talvey™ (talquetamab). Available from https://www.ema.europa.eu/en/medicines/human/EPAR/talvey. Accessed 29 November 2023.

Schinke C, Touzeau C, Minnema M, van de Donk N, Rodríguez-Otero P, Mateos M, et al. Pivotal phase 2 MonumenTAL-1 results of talquetamab, a GPRC5D×CD3 bispecific antibody, for relapsed/refractory multiple myeloma. Presented at American Society of Clinical Oncology (ASCO) Annual Meeting; June 2–6, 2023; Chicago, IL.

Chari A, Touzeau C, Schinke C, Minnema M, Berdega J, Oriol A, et al. Talquetamab, a G protein-coupled receptor family C group 5 member D × CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma: phase 1/2 results from MonumenTAL-1. Presented at American Society of Hematology (ASH) Annual Meeting; 10–13 December, 2022; New Orleans, LA.

Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk N, Rodriguez-Otero P, et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med. 2022;387(24):2232–44.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif