James P. Keller. Clinical alarm hazards: a “top ten” health technology safety concern. Journal of Electrocardiology, Vol 45 Issue 6: 588–591 (2012). Available from: https://pubmed.ncbi.nlm.nih.gov/23022300/
Tsien C L and Fackler J C 1997 Poor prognosis for existing monitors in the intensive care unit. Crit. Care Med. 25 614–9. Available from: https://pubmed.ncbi.nlm.nih.gov/9142025/
Baker, Carol F. PhD, RN Assistant Professor of Nursing. Discomfort to environmental noise: Heart rate responses of SICU patients. Critical Care Nursing Quarterly 15(2):p 75, August 1992. Available from: https://pubmed.ncbi.nlm.nih.gov/1628246/
Lewandowska K, Weisbrot M, Cielosczyk A, Medrzycka-Dabrowska W, Krupa S, Ozga D. Impact of Alarm Fatigue on the Work of Nurses in an Intensive Care Environment-A Systematic Review. Int J Environ Res Public Health. 2020;17(22):8409. Available from: https://pubmed.ncbi.nlm.nih.gov/33202907/
Chromik J, Klopfenstein SAI, Pfitzner B, Sinno ZC, Arnrich B, Balzer F, Poncette AS. Computational approaches to alleviate alarm fatigue in intensive care medicine: A systematic literature review. Front Digit Health. 2022; 4:8437437. Available from: https://pubmed.ncbi.nlm.nih.gov/36052315/
King A, Fortino K, Stevens N, Shah S, Fortino-Mullen M, Lee I. Evaluation of a smart alarm for intensive care using clinical data. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:166–169. Available from: https://pubmed.ncbi.nlm.nih.gov/23365858/
Ruppel H, De Vaux L, Cooper D, Kunz S, Duller B, Funk M. Testing physiologic monitor alarm customization software to reduce alarm rates and improve nurses’ experience of alarms in a medical intensive care unit. PLoS One. 2018;13(10):e0205901. Available from: https://pubmed.ncbi.nlm.nih.gov/30335824/
Fidler RL, Pelter MM, Drew BJ, Palacios JA, Bai Y, Stannard D, Aldrich JM, Hu X. Understanding heart rate alarm adjustment in the intensive care units through an analytical approach. PLoS One. 2017;12(11):e0187855. Available from: https://pubmed.ncbi.nlm.nih.gov/29176776/
Johnson, A.E.W., Bulgarelli, L., Shen, L. et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data 10, 1 (2023). Available from: https://pubmed.ncbi.nlm.nih.gov/36596836/
Sun W, Yan Y, Hu S, Liu B, Wang S, Yu W, Li S. The effects of midazolam or propofol plus fentanyl on ICU mortality: a retrospectivestudy based on the MIMIC-IV database. Ann Transl Med. 2022;10(4):219. Available from: https://pubmed.ncbi.nlm.nih.gov/35280412/
Pang K, Li L, Ouyang W, Liu X, Tang Y. Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database. Diagnostics. 2022; 12(5):1068. Available from: https://pubmed.ncbi.nlm.nih.gov/35626224/
Le Gall J, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270(24):2957–2963. Available from: https://pubmed.ncbi.nlm.nih.gov/8254858/
Toussaint PA, Leiser F, Thiebes S, Schlesner M, Brors B, Sunyaev A. Explainable artificial intelligence for omics data: a systematic mapping study. Brief Bioinform. 2023;25(1):bbad453.
Article PubMed PubMed Central Google Scholar
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825–2830, 2011. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
Loef B, Wong A, Janssen NAH, Strak M, Hoekstra J, Picavet HSJ, et al. Using random forest to identify longitudinal predictors of health in a 30-year cohort study. Sci Rep. 2022;12(1):10372.
Article PubMed PubMed Central CAS Google Scholar
Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 4768–4777. Available from: https://arxiv.org/abs/1705.07874
Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading, MA (1977).
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8. Available from: https://pubmed.ncbi.nlm.nih.gov/10793162/
Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Scientific Data. 2018;5:180178. Available from: https://pubmed.ncbi.nlm.nih.gov/30204154/(1)
Hyland SL, Faltys M, H¨user M, Lyu X, Gumbsch T, Esteban C, et al. Machine learning for early prediction of circulatory failure in the intensive care unit. Nat Med. 2020;26:364 – 73. Available from: https://pubmed.ncbi.nlm.nih.gov/32152583/
Thoral P, Peppink J, Driessen R, Sijbrands E, Kompanje E, Kaplan L, et al. Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example. Critical care medicine. 2021 02;Publish Ahead of Print. Available from: https://pubmed.ncbi.nlm.nih.gov/33625129/
留言 (0)