Sahiner, B., Chen, W., Samala, R.K., Petrick, N.: Data drift in medical machine learning: implications and potential remedies. The British Journal of Radiology 96(1150), 20220878 (2023)
Feng, J., Phillips, R.V., Malenica, I., Bishara, A., Hubbard, A.E., Celi, L.A., Pirracchio, R.: Clinical artificial intelligence quality improvement: towards continual monitoring and updating of ai algorithms in healthcare. npj Digital Medicine 5(1), 66 (2022)
Soin, A., Merkow, J., Long, J., Cohen, J.P., Saligrama, S., Kaiser, S., Borg, S., Tarapov, I., Lungren, M.P.: Chexstray: real-time multi-modal data concordance for drift detection in medical imaging ai. (2022) arXiv:2202.02833
Davis, S.E., Greevy Jr, R.A., Lasko, T.A., Walsh, C.G., Matheny, M.E.: Detection of calibration drift in clinical prediction models to inform model updating. Journal of biomedical informatics 112, 103611 (2020)
Wheeler, D., Chambers, D.: Understanding Statistical Process Control. SPC Press, Knoxville, TN (2010)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8), 1798–1828 (2013)
Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., Lakshminarayanan, B.: Likelihood ratios for out-of-distribution detection. Advances in neural information processing systems 32 (2019)
Nalisnick, E., Matsukawa, A., Teh, Y.W., Lakshminarayanan, B.: Detecting out-of-distribution inputs to deep generative models using typicality. (2019) arXiv:1906.02994
Zhang, L., Goldstein, M., Ranganath, R.: Understanding failures in out-of-distribution detection with deep generative models. In: International Conference on Machine Learning, pp. 12427–12436 (2021). PMLR
Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep feature learning for medical image analysis with convolutional autoencoder neural network. IEEE Transactions on Big Data 7(4), 750–758 (2017)
Meinke, A., Hein, M.: Towards Neural Networks That Provably Know When They Don’t Know (2019)
Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 41–50 (2019)
Ulmer, D., Cinà, G.: Know your limits: Uncertainty estimation with relu classifiers fails at reliable ood detection. In: Uncertainty in Artificial Intelligence, pp. 1766–1776 (2021). PMLR
Zou, K., Chen, Z., Yuan, X., Shen, X., Wang, M., Fu, H.: A review of uncertainty estimation and its application in medical imaging. Meta-Radiology, 100003 (2023)
Meinke, A., Bitterwolf, J., Hein, M.: Provably adversarially robust detection of out-of-distribution data (almost) for free. Advances in Neural Information Processing Systems 35, 30167–30180 (2022)
Ming, Y., Sun, Y., Dia, O., Li, Y.: Cider: Exploiting hyperspherical embeddings for out-of-distribution detection. (2022) arXiv:2203.04450
Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in neural information processing systems 31 (2018)
Huang, H., Li, Z., Wang, L., Chen, S., Dong, B., Zhou, X.: Feature space singularity for out-of-distribution detection. (2020) arXiv:2011.14654
Gomes, E.D.C., Alberge, F., Duhamel, P., Piantanida, P.: Igeood: An information geometry approach to out-of-distribution detection. (2022) arXiv:2203.07798
Techapanurak, E., Suganuma, M., Okatani, T.: Hyperparameter-free out-of-distribution detection using cosine similarity. In: Proceedings of the Asian Conference on Computer Vision (2020)
González, C., Gotkowski, K., Fuchs, M., Bucher, A., Dadras, A., Fischbach, R., Kaltenborn, I.J., Mukhopadhyay, A.: Distance-based detection of out-of-distribution silent failures for covid-19 lung lesion segmentation. Medical image analysis 82, 102596 (2022)
Kore, A., Abbasi Bavil, E., Subasri, V., Abdalla, M., Fine, B., Dolatabadi, E., Abdalla, M.: Empirical data drift detection experiments on real-world medical imaging data. Nature Communications 15(1), 1887 (2024)
Papadopoulos, A.-A., Rajati, M.R., Shaikh, N., Wang, J.: Outlier exposure with confidence control for out-of-distribution detection. Neurocomputing 441, 138–150 (2021)
Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR
Wei, Q., Ren, Y., Hou, R., Shi, B., Lo, J.Y., Carin, L.: Anomaly detection for medical images based on a one-class classification. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, pp. 375–380 (2018). SPIE
Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M., Sabokrou, M., et al.: A unified survey on anomaly, novelty, open-set, and out of-distribution detection: Solutions and future challenges. Transactions on Machine Learning Research (234) (2022)
Zimmerer, D., Full, P.M., Isensee, F., Jäger, P., Adler, T., Petersen, J., Köhler, G., Ross, T., Reinke, A., Kascenas, A., et al: Mood 2020: A public benchmark for out-of-distribution detection and localization on medical images. IEEE Transactions on Medical Imaging 41(10), 2728–2738 (2022)
Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: A survey. arXiv:2110.11334 (2021)
Mårtensson, G., Ferreira, D., Granberg, T., Cavallin, L., Oppedal, K., Padovani, A., Rektorova, I., Bonanni, L., Pardini, M., Kramberger, M.G., et al: The reliability of a deep learning model in clinical out-of-distribution mri data: a multicohort study. Medical Image Analysis 66, 101714 (2020)
De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., et al: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature medicine 24(9), 1342–1350 (2018)
Magudia, K., Bridge, C.P., Andriole, K.P., Rosenthal, M.H.: The trials and tribulations of assembling large medical imaging datasets for machine learning applications. Journal of Digital Imaging 34, 1424–1429 (2021)
Nestor, B., McDermott, M.B., Boag, W., Berner, G., Naumann, T., Hughes, M.C., Goldenberg, A., Ghassemi, M.: Feature robustness in non-stationary health records: caveats to deployable model performance in common clinical machine learning tasks. In: Machine Learning for Healthcare Conference, pp. 381–405 (2019). PMLR
Pooch, E.H., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In: Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2, pp. 74–83 (2020). Springer
AlBadawy, E.A., Saha, A., Mazurowski, M.A.: Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Medical physics 45(3), 1150–1158 (2018)
Bernhardt, M., Jones, C., Glocker, B.: Potential sources of dataset bias complicate investigation of underdiagnosis by machine learning algorithms. Nature Medicine 28(6), 1157–1158 (2022)
Finlayson, S.G., Subbaswamy, A., Singh, K., Bowers, J., Kupke, A., Zittrain, J., Kohane, I.S., Saria, S.: The clinician and dataset shift in artificial intelligence. New England Journal of Medicine 385(3), 283–286 (2021)
Celi, L.A., Cellini, J., Charpignon, M.-L., Dee, E.C., Dernoncourt, F., Eber, R., Mitchell, W.G., Moukheiber, L., Schirmer, J., Situ, J., et al: Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review. PLOS Digital Health 1(3), 0000022 (2022)
Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., Pianykh, O.S.: Temporal quality degradation in ai models. Scientific Reports 12(1), 11654 (2022)
Hinder, F., Artelt, A., Hammer, B.: Towards non-parametric drift detection via dynamic adapting window independence drift detection (dawidd). In: International Conference on Machine Learning, pp. 4249–4259 (2020). PMLR
Grulich, P.M., Saitenmacher, R., Traub, J., Breß, S., Rabl, T., Markl, V.: Scalable detection of concept drifts on data streams with parallel adaptive windowing. In: EDBT, pp. 477–480 (2018)
Prathapan, S., Samala, R.K., Hadjiyski, N., D’Haese, P.-F., Maldonado, F., Nguyen, P., Yesha, Y., Sahiner, B.: Quantifying input data drift in medical machine learning models by detecting change-points in time-series data. In: Medical Imaging 2024: Computer-Aided Diagnosis, vol. 12927, pp. 67–76 (2024). SPIE
YY, C., B, J., JH, S., G, O.: Quality initiatives: statistical control charts: simplifying the analysis of data for quality improvement. Radiographics, 2113–26 (2012)
Novoa, N.M., Varela, G.: Monitoring surgical quality: the cumulative sum (cusum) approach. Mediastinum 4 (2020)
Seim, A., Andersen, B., Sandberg, W.: Statistical Process Control as a Tool for Monitoring Nonoperative Time. Anesthesiology 105(2), 370–380 (2006)
Gupta M, K.H.: Using statistical process control to drive improvement in neonatal care: A practical introduction to control charts. Clinical Perinatology 44, 627–644 (2017)
Feng, J., Gossmann, A., Pennello, G., Petrick, N., Sahiner, B., Pirracchio, R.: Monitoring machine learning (ml)-based risk prediction algorithms in the presence of confounding medical interventions. arXiv:2211.09781 (2022)
Le-Khac, P.H., Healy, G., Smeaton, A.F.: Contrastive representation learning: A framework and review. IEEE Access 8, 193907–193934 (2020)
Park, C., Awadalla, A., Kohno, T., Patel, S.: Reliable and trustworthy machine learning for health using dataset shift detection. Advances in Neural Information Processing Systems 34, 3043–3056 (2021)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954). Accessed 2023-07-25
Crosier, R.B.: A new two-sided cumulative sum quality control scheme. Technometrics 28(3), 187–194 (1986)
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Scientific Data 10(1), 41 (2023)
Article PubMed PubMed Central Google Scholar
Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A., Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., et al: The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis 84, 102680 (2023)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 7, p. 46 (2017)
Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., et al: Identifying medical diagnoses and treatable diseases by image-based deep learning. cell 172(5), 1122–1131 (2018)
Bustos, A., Pertusa, A., Salinas, J.-M., Iglesia-Vayá, M.: Padchest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis 66, 101797 (2020)
Jiménez-Sánchez, A., Juodelyte, D., Chamberlain, B., Cheplygina, V.: Detecting shortcuts in medical images-a case study in chest x-rays. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2023). IEEE
Xu, Y., Zhao, R.-W., Feng, R.: Lesion-aware open set medical image recognition with domain shift. In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2151–2155 (2024). IEEE
Budhwant, P., Shinde, S., Ingalhalikar, M.: Open-set recognition for skin lesions using dermoscopic images. pp. 614–623 In: International Workshop on Machine Learning in Medical Imaging, (2020). Springer
Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. Advances in neural information processing systems 33, 18661–18673 (2020)
留言 (0)