Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study

Morgan D, Fisher D, Merianos A and Currie B. An 18 year clinical review of septic arthritis from tropical Australia. Epidemiology & Infection. 1996; 117: 423-8.

Article  CAS  Google Scholar 

Weston V, Jones A, Bradbury N, Fawthrop F and Doherty M. Clinical features and outcome of septic arthritis in a single UK Health District 1982–1991. Annals of the Rheumatic Diseases. 1999; 58: 214-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathews CJ, Weston VC, Jones A, Field M and Coakley G. Bacterial septic arthritis in adults. The Lancet. 2010; 375: 846-55.

Article  Google Scholar 

Silvagni E, Zandonella Callegher S, Mauric E, et al. Musculoskeletal ultrasound for treating rheumatoid arthritis to target—a systematic literature review. Rheumatology. 2022; 61: 4590-602.

Article  PubMed  PubMed Central  Google Scholar 

Cardinal É, Bureau NJ, Aubin B and Chhem RK. Role of ultrasound in musculoskeletal infections. Radiologic clinics of north America. 2001; 39: 191-201.

Article  CAS  PubMed  Google Scholar 

Chau C and Griffith J. Musculoskeletal infections: ultrasound appearances. Clinical radiology. 2005; 60: 149-59.

Article  CAS  PubMed  Google Scholar 

Legome E and Pancu D. Future applications for emergency ultrasound. Emergency Medicine Clinics. 2004; 22: 817-27.

Article  PubMed  Google Scholar 

Tayal VS, Hasan N, Norton HJ and Tomaszewski CA. The effect of soft‐tissue ultrasound on the management of cellulitis in the emergency department. Academic emergency medicine. 2006; 13: 384-8.

PubMed  Google Scholar 

Löffler C, Sattler H, Peters L, et al. In arthritis the Doppler based degree of hypervascularisation shows a positive correlation with synovial leukocyte count and distinguishes joints with leukocytes greater and less than 5/nL. Joint Bone Spine. 2016; 83: 517-23.

Article  PubMed  Google Scholar 

Lo C-M and Lai K-L. Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities. Computer Methods and Programs in Biomedicine. 2023; 237: 107575.

Article  PubMed  Google Scholar 

Lo C-M and Hung P-H. Computer-aided diagnosis of ischemic stroke using multi-dimensional image features in carotid color Doppler. Computers in Biology and Medicine. 2022; 147: 105779.

Article  PubMed  Google Scholar 

Tang R, Li Z, Jiang L, et al. Development and clinical application of artificial intelligence assistant system for rotator cuff ultrasound scanning. Ultrasound in Medicine & Biology. 2024; 50: 251-7.

Article  Google Scholar 

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:201011929. 2020.

Holzmeister A, Frazzetta J, Yuan FFN, et al. Evaluation for septic arthritis of the native adult knee is aided by multivariable assessment. The American Journal of Emergency Medicine. 2021; 46: 614-8.

Article  PubMed  Google Scholar 

Choi ES, Sim JA, Na YG, Seon JK and Shin HD. Machine‐learning algorithm that can improve the diagnostic accuracy of septic arthritis of the knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2021; 29: 3142-8.

Article  PubMed Central  Google Scholar 

Lo C-M and Hung P-H. Assessing Ischemic Stroke with Convolutional Image Features in Carotid Color Doppler. Ultrasound in Medicine & Biology. 2021; 47: 2266-76.

Article  Google Scholar 

Lo CM and Hung PH. Predictive stroke risk model with vision transformer‐based Doppler features. Medical Physics. 2024; 51: 126-38.

Article  PubMed  Google Scholar 

Lo C-M, Wang C-C and Hung P-H. Interactive content-based image retrieval with deep learning for CT abdominal organ recognition. Physics in Medicine & Biology. 2024; 69: 045004.

Article  Google Scholar 

Backhaus M, Burmester G, Gerber T, et al. Guidelines for musculoskeletal ultrasound in rheumatology. Annals of the rheumatic diseases. 2001; 60: 641-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woo S, Park J, Lee J-Y and Kweon IS. Cbam: Convolutional block attention module. Proceedings of the European conference on computer vision (ECCV). 2018, p. 3–19.

Lo C-M, Yang Y-W, Lin J-K, et al. Modeling the survival of colorectal cancer patients based on colonoscopic features in a feature ensemble vision transformer. Computerized Medical Imaging and Graphics. 2023; 107: 102242.

Article  PubMed  Google Scholar 

Zhang J, He X, Liu Y, Cai Q, Chen H and Qing L. Multi-modal cross-attention network for Alzheimer’s disease diagnosis with multi-modality data. Computers in Biology and Medicine. 2023; 162: 107050.

Article  CAS  PubMed  Google Scholar 

Reddy ASK, Rao KB, Soora NR, et al. Multi-modal fusion of deep transfer learning based COVID-19 diagnosis and classification using chest x-ray images. Multimedia Tools and Applications. 2023; 82: 12653-77.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif