Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., Schneider, S.M., Sieber, C.C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M., Bautmans, I., Baeyens, J.-P., Cesari, M., Cherubini, A., Kanis, J., Maggio, M., Martin, F., Michel, J.-P., Pitkala, K., Reginster, J.-Y., Rizzoli, R., Sánchez-Rodríguez, D., Schols, J.: Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 48, 16–31 (2019). https://doi.org/10.1093/ageing/afy169
Cruz-Jentoft, A.J., Sayer, A.A.: Sarcopenia. The Lancet. 393, 2636–2646 (2019). https://doi.org/10.1016/S0140-6736(19)31138-9
Janssen, I., Heymsfield, S.B., Ross, R.: Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc. 50, 889–896 (2002). https://doi.org/10.1046/j.1532-5415.2002.50216.x
Papadopoulou, S.: Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients. 12, 1293 (2020). https://doi.org/10.3390/nu12051293
Article PubMed PubMed Central Google Scholar
Auyeung, T.W., Lee, S.W.J., Leung, J., Kwok, T., Woo, J.: Age‐associated decline of muscle mass, grip strength and gait speed: A 4‐year longitudinal study of 3018 community‐dwelling older <scp>C</scp> hinese. Geriatr Gerontol Int. 14, 76–84 (2014). https://doi.org/10.1111/ggi.12213
Schaap, L.A., Koster, A., Visser, M.: Adiposity, Muscle Mass, and Muscle Strength in Relation to Functional Decline in Older Persons. Epidemiol Rev. 35, 51–65 (2013). https://doi.org/10.1093/epirev/mxs006
Goodpaster, B.H., Park, S.W., Harris, T.B., Kritchevsky, S.B., Nevitt, M., Schwartz, A. V., Simonsick, E.M., Tylavsky, F.A., Visser, M., Newman, A.B.: The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci. 61, 1059–1064 (2006). https://doi.org/10.1093/gerona/61.10.1059
Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R., Singh, M.A.F.: Longitudinal Muscle Strength Changes in Older Adults: Influence of Muscle Mass, Physical Activity, and Health. J Gerontol A Biol Sci Med Sci. 56, B209–B217 (2001). https://doi.org/10.1093/gerona/56.5.B209
Article CAS PubMed Google Scholar
McGregor, R.A., Cameron-Smith, D., Poppitt, S.D.: It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 3, 9 (2014). https://doi.org/10.1186/2046-2395-3-9
Article PubMed PubMed Central Google Scholar
Shen, W., Punyanitya, M., Wang, Z., Gallagher, D., St.-Onge, M.-P., Albu, J., Heymsfield, S.B., Heshka, S.: Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 97, 2333–2338 (2004). https://doi.org/10.1152/japplphysiol.00744.2004
Lin, Y.-L., Liou, H.-H., Wang, C.-H., Lai, Y.-H., Kuo, C.-H., Chen, S.-Y., Hsu, B.-G.: Impact of sarcopenia and its diagnostic criteria on hospitalization and mortality in chronic hemodialysis patients: A 3-year longitudinal study. J Formos Med Assoc. 119, 1219–1229 (2020). https://doi.org/10.1016/j.jfma.2019.10.020
Tieland, M., Trouwborst, I., Clark, B.C.: Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 9, 3–19 (2018). https://doi.org/10.1002/jcsm.12238
Hamaguchi, Y., Kaido, T., Okumura, S., Kobayashi, A., Shirai, H., Yagi, S., Kamo, N., Okajima, H., Uemoto, S.: Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation. Transplantation. 101, 565–574 (2017). https://doi.org/10.1097/TP.0000000000001587
Heymsfield, S.B., Gonzalez, M.C., Lu, J., Jia, G., Zheng, J.: Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proceedings of the Nutrition Society. 74, 355–366 (2015). https://doi.org/10.1017/S0029665115000129
Reinders, I., Murphy, R.A., Brouwer, I.A., Visser, M., Launer, L., Siggeirsdottir, K., Eiriksdottir, G., Gudnason, V., Jonsson, P. V, Lang, T.F., Harris, T.B., Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study: Muscle Quality and Myosteatosis: Novel Associations With Mortality Risk: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol. 183, 53–60 (2016). https://doi.org/10.1093/aje/kwv153
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R.G.P.M., Granton, P., Zegers, C.M.L., Gillies, R., Boellard, R., Dekker, A., Aerts, H.J.W.L.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48, (2012). https://doi.org/10.1016/j.ejca.2011.11.036
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M.M., Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 5, (2014). https://doi.org/10.1038/ncomms5006
Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: Images are more than pictures, they are data. Radiology. 278, (2016). https://doi.org/10.1148/radiol.2015151169
Shimozono, T., Shiiba, T., Takano, K.: Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson’s disease. Eur Radiol. (2024). https://doi.org/10.1007/s00330-024-10886-2
Cai, J., Xing, F., Batra, A., Liu, F., Walter, G.A., Vandenborne, K., Yang, L.: Texture analysis for muscular dystrophy classification in MRI with improved class activation mapping. Pattern Recognit. 86, 368–375 (2019). https://doi.org/10.1016/j.patcog.2018.08.012
Mahmoud-Ghoneim, D., Cherel, Y., Lemaire, L., de Certaines, J.D., Maniere, A.: Texture analysis of magnetic resonance images of rat muscles during atrophy and regeneration. Magn Reson Imaging. 24, 167–171 (2006). https://doi.org/10.1016/j.mri.2005.10.002
Mahmoud‐Ghoneim, D., Bonny, J., Renou, J., de Certaines, J.D.: Ex‐vivo magnetic resonance image texture analysis can discriminate genotypic origin in bovine meat. J Sci Food Agric. 85, 629–632 (2005). https://doi.org/10.1002/jsfa.1841
Kent-Braun, J.A., Ng, A. V., Young, K.: Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol. 88, 662–668 (2000). https://doi.org/10.1152/jappl.2000.88.2.662
Article CAS PubMed Google Scholar
Jubrias, S.A., Odderson, I.R., Esselman, P.C., Conley, K.E.: Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflügers Archiv European Journal of Physiology. 434, 246–253 (1997). https://doi.org/10.1007/s004240050392
Article CAS PubMed Google Scholar
Overend, T.J., Cunningham, D.A., Paterson, D.H., Lefcoe, M.S.: Thigh composition in young and elderly men determined by computed tomography. Clinical Physiology. 12, 629–640 (1992). https://doi.org/10.1111/j.1475-097X.1992.tb00366.x
Article CAS PubMed Google Scholar
Forsberg, A.M., Nilsson, E., Werneman, J., Bergström, J., Hultman, E.: Muscle composition in relation to age and sex. Clin Sci. 81, 249–256 (1991). https://doi.org/10.1042/cs0810249
Dong, X., Dan, X., Yawen, A., Haibo, X., Huan, L., Mengqi, T., Linglong, C., Zhao, R.: Identifying sarcopenia in advanced non‐small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Thorac Cancer. 11, 2650–2659 (2020). https://doi.org/10.1111/1759-7714.13598
Article PubMed PubMed Central Google Scholar
Kim, Y.J.: Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography. Int J Environ Res Public Health. 18, 8710 (2021). https://doi.org/10.3390/ijerph18168710
Article PubMed PubMed Central Google Scholar
Hinzpeter, R., Mirshahvalad, S.A., Kulanthaivelu, R., Ortega, C., Metser, U., Liu, Z.A., Elimova, E., Wong, R.K.S., Yeung, J., Jang, R.W.-J., Veit-Haibach, P.: Prognostic Value of [18F]-FDG PET/CT Radiomics Combined with Sarcopenia Status among Patients with Advanced Gastroesophageal Cancer. Cancers (Basel). 14, 5314 (2022). https://doi.org/10.3390/cancers14215314
Song, Y., Tian, Y., Lu, X., Chen, G., Lv, X.: Prognostic value of 18 F‐FDG PET radiomics and sarcopenia in patients with oral squamous cell carcinoma. Med Phys. 51, 4907–4921 (2024). https://doi.org/10.1002/mp.16949
Article CAS PubMed Google Scholar
Fischer, M., Küstner, T., Pappa, S., Niendorf, T., Pischon, T., Kröncke, T., Bette, S., Schramm, S., Schmidt, B., Haubold, J., Nensa, F., Nonnenmacher, T., Palm, V., Bamberg, F., Kiefer, L., Schick, F., Yang, B.: Identification of radiomic biomarkers in a set of four skeletal muscle groups on Dixon MRI of the NAKO MR study. BMC Med Imaging. 23, 104 (2023). https://doi.org/10.1186/s12880-023-01056-9
Article PubMed PubMed Central Google Scholar
Hasson, C.J., Kent, J.A., Caldwell, G.E.: Magnetic resonance images and measurements of the volume, proportion, and longitudinal distribution of contractile and non-contractile tissue in the dorsi- and plantar flexor muscles of healthy young and older adults. BMC Res Notes. 11, 910 (2018). https://doi.org/10.1186/s13104-018-4026-x
留言 (0)