Assessment of Age-Related Differences in Lower Leg Muscles Quality Using Radiomic Features of Magnetic Resonance Images

Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., Schneider, S.M., Sieber, C.C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M., Bautmans, I., Baeyens, J.-P., Cesari, M., Cherubini, A., Kanis, J., Maggio, M., Martin, F., Michel, J.-P., Pitkala, K., Reginster, J.-Y., Rizzoli, R., Sánchez-Rodríguez, D., Schols, J.: Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 48, 16–31 (2019). https://doi.org/10.1093/ageing/afy169

Article  PubMed  Google Scholar 

Cruz-Jentoft, A.J., Sayer, A.A.: Sarcopenia. The Lancet. 393, 2636–2646 (2019). https://doi.org/10.1016/S0140-6736(19)31138-9

Article  Google Scholar 

Janssen, I., Heymsfield, S.B., Ross, R.: Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc. 50, 889–896 (2002). https://doi.org/10.1046/j.1532-5415.2002.50216.x

Article  PubMed  Google Scholar 

Papadopoulou, S.: Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients. 12, 1293 (2020). https://doi.org/10.3390/nu12051293

Article  PubMed  PubMed Central  Google Scholar 

Auyeung, T.W., Lee, S.W.J., Leung, J., Kwok, T., Woo, J.: Age‐associated decline of muscle mass, grip strength and gait speed: A 4‐year longitudinal study of 3018 community‐dwelling older <scp>C</scp> hinese. Geriatr Gerontol Int. 14, 76–84 (2014). https://doi.org/10.1111/ggi.12213

Article  PubMed  Google Scholar 

Schaap, L.A., Koster, A., Visser, M.: Adiposity, Muscle Mass, and Muscle Strength in Relation to Functional Decline in Older Persons. Epidemiol Rev. 35, 51–65 (2013). https://doi.org/10.1093/epirev/mxs006

Article  PubMed  Google Scholar 

Goodpaster, B.H., Park, S.W., Harris, T.B., Kritchevsky, S.B., Nevitt, M., Schwartz, A. V., Simonsick, E.M., Tylavsky, F.A., Visser, M., Newman, A.B.: The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci. 61, 1059–1064 (2006). https://doi.org/10.1093/gerona/61.10.1059

Article  PubMed  Google Scholar 

Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R., Singh, M.A.F.: Longitudinal Muscle Strength Changes in Older Adults: Influence of Muscle Mass, Physical Activity, and Health. J Gerontol A Biol Sci Med Sci. 56, B209–B217 (2001). https://doi.org/10.1093/gerona/56.5.B209

Article  CAS  PubMed  Google Scholar 

McGregor, R.A., Cameron-Smith, D., Poppitt, S.D.: It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 3, 9 (2014). https://doi.org/10.1186/2046-2395-3-9

Article  PubMed  PubMed Central  Google Scholar 

Shen, W., Punyanitya, M., Wang, Z., Gallagher, D., St.-Onge, M.-P., Albu, J., Heymsfield, S.B., Heshka, S.: Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 97, 2333–2338 (2004). https://doi.org/10.1152/japplphysiol.00744.2004

Lin, Y.-L., Liou, H.-H., Wang, C.-H., Lai, Y.-H., Kuo, C.-H., Chen, S.-Y., Hsu, B.-G.: Impact of sarcopenia and its diagnostic criteria on hospitalization and mortality in chronic hemodialysis patients: A 3-year longitudinal study. J Formos Med Assoc. 119, 1219–1229 (2020). https://doi.org/10.1016/j.jfma.2019.10.020

Article  PubMed  Google Scholar 

Tieland, M., Trouwborst, I., Clark, B.C.: Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 9, 3–19 (2018). https://doi.org/10.1002/jcsm.12238

Article  PubMed  Google Scholar 

Hamaguchi, Y., Kaido, T., Okumura, S., Kobayashi, A., Shirai, H., Yagi, S., Kamo, N., Okajima, H., Uemoto, S.: Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation. Transplantation. 101, 565–574 (2017). https://doi.org/10.1097/TP.0000000000001587

Article  PubMed  Google Scholar 

Heymsfield, S.B., Gonzalez, M.C., Lu, J., Jia, G., Zheng, J.: Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proceedings of the Nutrition Society. 74, 355–366 (2015). https://doi.org/10.1017/S0029665115000129

Article  PubMed  Google Scholar 

Reinders, I., Murphy, R.A., Brouwer, I.A., Visser, M., Launer, L., Siggeirsdottir, K., Eiriksdottir, G., Gudnason, V., Jonsson, P. V, Lang, T.F., Harris, T.B., Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study: Muscle Quality and Myosteatosis: Novel Associations With Mortality Risk: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol. 183, 53–60 (2016). https://doi.org/10.1093/aje/kwv153

Article  PubMed  Google Scholar 

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R.G.P.M., Granton, P., Zegers, C.M.L., Gillies, R., Boellard, R., Dekker, A., Aerts, H.J.W.L.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 48, (2012). https://doi.org/10.1016/j.ejca.2011.11.036

Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M.M., Leemans, C.R., Dekker, A., Quackenbush, J., Gillies, R.J., Lambin, P.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 5, (2014). https://doi.org/10.1038/ncomms5006

Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: Images are more than pictures, they are data. Radiology. 278, (2016). https://doi.org/10.1148/radiol.2015151169

Shimozono, T., Shiiba, T., Takano, K.: Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson’s disease. Eur Radiol. (2024). https://doi.org/10.1007/s00330-024-10886-2

Article  PubMed  Google Scholar 

Cai, J., Xing, F., Batra, A., Liu, F., Walter, G.A., Vandenborne, K., Yang, L.: Texture analysis for muscular dystrophy classification in MRI with improved class activation mapping. Pattern Recognit. 86, 368–375 (2019). https://doi.org/10.1016/j.patcog.2018.08.012

Article  PubMed  Google Scholar 

Mahmoud-Ghoneim, D., Cherel, Y., Lemaire, L., de Certaines, J.D., Maniere, A.: Texture analysis of magnetic resonance images of rat muscles during atrophy and regeneration. Magn Reson Imaging. 24, 167–171 (2006). https://doi.org/10.1016/j.mri.2005.10.002

Article  PubMed  Google Scholar 

Mahmoud‐Ghoneim, D., Bonny, J., Renou, J., de Certaines, J.D.: Ex‐vivo magnetic resonance image texture analysis can discriminate genotypic origin in bovine meat. J Sci Food Agric. 85, 629–632 (2005). https://doi.org/10.1002/jsfa.1841

Article  CAS  Google Scholar 

Kent-Braun, J.A., Ng, A. V., Young, K.: Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol. 88, 662–668 (2000). https://doi.org/10.1152/jappl.2000.88.2.662

Article  CAS  PubMed  Google Scholar 

Jubrias, S.A., Odderson, I.R., Esselman, P.C., Conley, K.E.: Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflügers Archiv European Journal of Physiology. 434, 246–253 (1997). https://doi.org/10.1007/s004240050392

Article  CAS  PubMed  Google Scholar 

Overend, T.J., Cunningham, D.A., Paterson, D.H., Lefcoe, M.S.: Thigh composition in young and elderly men determined by computed tomography. Clinical Physiology. 12, 629–640 (1992). https://doi.org/10.1111/j.1475-097X.1992.tb00366.x

Article  CAS  PubMed  Google Scholar 

Forsberg, A.M., Nilsson, E., Werneman, J., Bergström, J., Hultman, E.: Muscle composition in relation to age and sex. Clin Sci. 81, 249–256 (1991). https://doi.org/10.1042/cs0810249

Article  CAS  Google Scholar 

Dong, X., Dan, X., Yawen, A., Haibo, X., Huan, L., Mengqi, T., Linglong, C., Zhao, R.: Identifying sarcopenia in advanced non‐small cell lung cancer patients using skeletal muscle CT radiomics and machine learning. Thorac Cancer. 11, 2650–2659 (2020). https://doi.org/10.1111/1759-7714.13598

Article  PubMed  PubMed Central  Google Scholar 

Kim, Y.J.: Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography. Int J Environ Res Public Health. 18, 8710 (2021). https://doi.org/10.3390/ijerph18168710

Article  PubMed  PubMed Central  Google Scholar 

Hinzpeter, R., Mirshahvalad, S.A., Kulanthaivelu, R., Ortega, C., Metser, U., Liu, Z.A., Elimova, E., Wong, R.K.S., Yeung, J., Jang, R.W.-J., Veit-Haibach, P.: Prognostic Value of [18F]-FDG PET/CT Radiomics Combined with Sarcopenia Status among Patients with Advanced Gastroesophageal Cancer. Cancers (Basel). 14, 5314 (2022). https://doi.org/10.3390/cancers14215314

Song, Y., Tian, Y., Lu, X., Chen, G., Lv, X.: Prognostic value of 18 F‐FDG PET radiomics and sarcopenia in patients with oral squamous cell carcinoma. Med Phys. 51, 4907–4921 (2024). https://doi.org/10.1002/mp.16949

Article  CAS  PubMed  Google Scholar 

Fischer, M., Küstner, T., Pappa, S., Niendorf, T., Pischon, T., Kröncke, T., Bette, S., Schramm, S., Schmidt, B., Haubold, J., Nensa, F., Nonnenmacher, T., Palm, V., Bamberg, F., Kiefer, L., Schick, F., Yang, B.: Identification of radiomic biomarkers in a set of four skeletal muscle groups on Dixon MRI of the NAKO MR study. BMC Med Imaging. 23, 104 (2023). https://doi.org/10.1186/s12880-023-01056-9

Article  PubMed  PubMed Central  Google Scholar 

Hasson, C.J., Kent, J.A., Caldwell, G.E.: Magnetic resonance images and measurements of the volume, proportion, and longitudinal distribution of contractile and non-contractile tissue in the dorsi- and plantar flexor muscles of healthy young and older adults. BMC Res Notes. 11, 910 (2018). https://doi.org/10.1186/s13104-018-4026-x

Article  PubMed

留言 (0)

沒有登入
gif