Current landscape of mRNA technologies and delivery systems for new modality therapeutics

Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol. 2018;14(10):570–570.

PubMed  Google Scholar 

Wang YS, Kumari M, Chen GH, Hong MH, Yuan JP, Tsai JL, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–54.

Article  CAS  PubMed  Google Scholar 

Mullard A. Pfizer’s COVID-19 vaccine secures first full FDA approval. Nat Rev Drug Discovery. 2021;20(10):728.

PubMed  Google Scholar 

Moderna I. Moderna Receives Full U.S. FDA Approval for COVID-19 Vaccine Spikevax. <https://investors.modernatx.com/news/news-details/2022/Moderna-Receives-Full-U.S.-FDA-Approval-for-COVID-19-Vaccine-Spikevax/default.aspx>. 2022. Accessed 31 Jan 2022.

Mullard A. FDA approves mRNA-based RSV vaccine. Nat Rev Drug Discover. 2024;23:487.

Google Scholar 

Excler J-L, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med. 2021;27(4):591–600.

Article  CAS  PubMed  Google Scholar 

Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discover. 2014;13(10):759–80.

Article  CAS  Google Scholar 

Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.

Article  PubMed  Google Scholar 

Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.

Article  PubMed  Google Scholar 

Huang X, Kong N, Zhang X, Cao Y, Langer R, Tao W. The landscape of mRNA nanomedicine. Nat Med. 2022;28(11):2273–87.

Article  CAS  PubMed  Google Scholar 

Dimitriadis GJ. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature. 1978;274(5674):923–4.

Article  CAS  PubMed  Google Scholar 

Ostro MJ, Giacomoni D, Lavelle DON, Paxton W, Dray S. Evidence for translation of rabbit globin mRNA after liposomemediated insertion into a human cell line. Nature. 1978;274(5674):921–3.

Article  CAS  PubMed  Google Scholar 

Islam MA, Reesor EK, Xu Y, Zope HR, Zetter BR, Shi J. Biomaterials for mRNA delivery. Biomater Sci. 2015;3(12):1519–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thorn CR, Sharma D, Combs R, Bhujbal S, Romine J, Zheng X, et al. The journey of a lifetime-development of Pfizer’s COVID-19 vaccine. Curr Opin Biotechnol. 2022;78: 102803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Zhang Z, Jin P, Jiang K, Xu Y, Pan F, et al. Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int J Pharm. 2024;650: 123695.

Article  CAS  PubMed  Google Scholar 

Wu Y, Yu S, de Lázaro I. Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. Nanoscale. 2024;16(14):6820–36.

Article  CAS  PubMed  Google Scholar 

Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, et al. mRNA vaccine in cancer therapy: current advance and future outlook. Clin Transl Med. 2023;13(8): e1384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6.

Article  CAS  PubMed  Google Scholar 

Marcos-Contreras OA, Greineder CF, Kiseleva RY, Parhiz H, Walsh LR, Zuluaga-Ramirez V, et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc Natl Acad Sci USA. 2020;117(7):3405–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Choi J, Kim EH, Park W, Jang H, Jang Y, et al. Design of PD-L1-targeted lipid nanoparticles to turn on PTEN for efficient cancer therapy. Adv Sci. 2024: 2309917.

Kasiewicz LN, Biswas S, Beach A, Ren H, Dutta C, Mazzola AM, et al. GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat Commun. 2023;14(1):2776.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Chan C, Peterson N, Hanna RN, Alfaro A, Allen KL, et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem Biol. 2020;15(4):830–6.

Article  CAS  PubMed  Google Scholar 

Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol. 2023;20(11):739–54.

Article  CAS  PubMed  Google Scholar 

Yen A, Zappala Z, Fine RS, Majarian TD, Sripakdeevong P, Altshuler D. Specificity of CRISPR-Cas9 editing in exagamglogene autotemcel. N Engl J Med. 2024;390:1723–5.

Article  PubMed  Google Scholar 

Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502.

Article  CAS  PubMed  Google Scholar 

Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;190(4776):576–81.

Article  CAS  PubMed  Google Scholar 

Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discover. 2024.

Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019;47(20):e130–e130.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–5.

Article  CAS  PubMed  Google Scholar 

Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA. 2001;7(10):1486–95.

CAS  PubMed  PubMed Central  Google Scholar 

Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA. 2007;13(10):1745–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun. 2007;358(1):373–8.

留言 (0)

沒有登入
gif