Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin

Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swidergall, M. et al. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J. Infect. Dis. https://doi.org/10.1093/infdis/jiz322 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ho, J. et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat. Commun. 10, 2297 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Russell, C. M. et al. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells. eLife https://doi.org/10.7554/eLife.75490 (2022).

Naglik, J. R., Gaffen, S. L. & Hube, B. Candidalysin: discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 52, 100–109 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swidergall, M. et al. EphA2 is a neutrophil receptor for Candida albicans that stimulates antifungal activity during oropharyngeal infection. Cell Rep. 28, 423–433 e425 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westman, J. et al. Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell Rep. 38, 110187 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mogavero, S. et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell Microbiol. 23, e13378 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Kasper, L. et al. The fungal peptide toxin candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Russell, C. M., Rybak, J. A., Miao, J., Peters, B. M. & Barrera, F. N. Candidalysin: connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties. J. Biol. Chem. 299, 102829 (2023).

Article  CAS  PubMed  Google Scholar 

Hanaoka, M. & Domae, E. IL-1α released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response. Int. Immunol. 33, 161–170 (2021).

Article  CAS  PubMed  Google Scholar 

Nikou, S. A. et al. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR–ERK pathways. Sci. Signal. 15, eabj6915 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, L. et al. Candidalysin amplifies the immune inflammatory response in Candida albicans keratitis through the TREM-1/DAP12 pathway. Int. Immunopharmacol. 119, 110195 (2023).

Article  CAS  PubMed  Google Scholar 

Ponde, N. O. et al. Receptor-kinase EGFR–MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin. J. Biol. Chem. 298, 102419 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moyes, D. L. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8, 225–235 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori, T., Kataoka, H., Tanabe, G. & Into, T. Solubility affects IL-1β-producing activity of the synthetic candidalysin peptide. PLoS ONE 17, e0273663 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altmeier, S. et al. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog. 12, e1005882 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spahn, P. N. et al. PinAPL-Py: a comprehensive web-application for the analysis of CRISPR/Cas9 screens. Sci. Rep. 7, 15854 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Yamaji, T. et al. A CRISPR screen using subtilase cytotoxin identifies SLC39A9 as a glycan-regulating factor. iScience 15, 407–420 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saenz, J. B. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat. Chem. Biol. 5, 157–165 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindahl, U., Couchman, J., Kimata, K. & Esko, J. D. in Essentials of Glycobiology (eds Varki, A. et al.) 207–221 (Cold Spring Harbor Laboratory Press, 2015).

Chen, Y. H. et al. The GAGOme: a cell-based library of displayed glycosaminoglycans. Nat. Methods 15, 881–888 (2018).

Article  CAS  PubMed  Google Scholar 

Mizumoto, S. & Yamada, S. Congenital disorders of deficiency in glycosaminoglycan biosynthesis. Front. Genet. 12, 717535 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soares da Costa, D., Reis, R. L. & Pashkuleva, I. Sulfation of glycosaminoglycans and its implications in human health and disorders. Annu. Rev. Biomed. Eng. 19, 1–26 (2017).

Article  CAS  PubMed  Google Scholar 

Ritelli, M. et al. Further defining the phenotypic spectrum of B3GAT3 mutations and literature review on linkeropathy syndromes. Genes https://doi.org/10.3390/genes10090631 (2019).

Aquino, R. S. & Park, P. W. Glycosaminoglycans and infection. Front. Biosci. 21, 1260–1277 (2016).

Article  CAS  Google Scholar 

Shi, D., Sheng, A. & Chi, L. Glycosaminoglycan–protein interactions and their roles in human disease. Front. Mol. Biosci. 8, 639666 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallet, S. D., Clerc, O. & Ricard-Blum, S. Glycosaminoglycan–protein interactions: the first draft of the glycosaminoglycan interactome. J. Histochem. Cytochem. 69, 93–104 (2021).

Article  CAS  PubMed  Google Scholar 

Levitan, I. Evaluating membrane structure by Laurdan imaging: disruption of lipid packing by oxidized lipids. Curr. Top. Membr. 88, 235–256 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orlikowska-Rzeznik, H., Krok, E., Chattopadhyay, M., Lester, A. & Piatkowski, L. Laurdan discerns lipid membrane hydration and cholesterol content. J. Phys. Chem. B 127, 3382–3391 (2023).

Article 

留言 (0)

沒有登入
gif