Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21
Ortega Moreno L et al (2023) New pieces for an old puzzle: Approaching Parkinson’s disease from translatable animal models, gut microbiota modulation, and lipidomics. Nutrients 15(12):2775
Article CAS PubMed PubMed Central Google Scholar
Zhu B, Yin D, Zhao H, Zhang L (2022) The immunology of parkinson’s disease. in seminars in immunopathology, vol 44, No. 5. Springer, Heidelberg, pp 659–672
Li Y et al (2021) Intestinal inflammation and Parkinson’s disease. Aging Dis 12(8):2052
Article PubMed PubMed Central Google Scholar
Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12
Falony G et al (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564
Article CAS PubMed Google Scholar
Bedarf JR et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med 9(1):39
Article CAS PubMed PubMed Central Google Scholar
Pistollato F et al (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74(10):624–634
Arora T, Bäckhed F (2016) The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 280(4):339–349
Article CAS PubMed Google Scholar
Fang X (2016) Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci 126(9):771–776
Article CAS PubMed Google Scholar
Kelly LP et al (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29(8):999–1009
Article CAS PubMed Google Scholar
Forsyth CB et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6(12):e28032
Article CAS PubMed PubMed Central Google Scholar
Sampson TR et al (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 167(6):1469-1480.e12
Article CAS PubMed PubMed Central Google Scholar
Unger MM et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72
Hill-Burns EM et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749
Article CAS PubMed PubMed Central Google Scholar
Boertien JM et al (2019) Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J Parkinsons Dis 9(s2):S297–S312
Article PubMed PubMed Central Google Scholar
Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595(2):489–503
Article CAS PubMed Google Scholar
Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Park Dis 3(1):3
Cummings JH et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227
Article CAS PubMed PubMed Central Google Scholar
Kaiko GE et al (2016) The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165(7):1708–1720
Article CAS PubMed PubMed Central Google Scholar
Roediger W (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83(2):424–429
Article CAS PubMed Google Scholar
Kelly CJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671
Article CAS PubMed PubMed Central Google Scholar
Inan MS et al (2000) The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118(4):724–734
Article CAS PubMed Google Scholar
Dalile B et al (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478
Cirstea MS et al (2020) Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov Disord 35(7):1208–1217
Article CAS PubMed Google Scholar
Lan Z et al (2024) The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 10:e26377
Article CAS PubMed PubMed Central Google Scholar
Fülling C, Dinan TG, Cryan JF (2019) Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron 101(6):998–1002
Ullah H et al (2023) The gut microbiota-brain axis in neurological disorder. Front Neurosci 17:1225875
Article PubMed PubMed Central Google Scholar
Loh JS et al (2024) Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Sig Transduct Target Ther 9(1):37
Baldi S et al (2021) Microbiota shaping—The effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J Gastroenterol 27(39):6715
Article PubMed PubMed Central Google Scholar
Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62(5):1589–1592
Article CAS PubMed PubMed Central Google Scholar
Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8
Article CAS PubMed Google Scholar
Fernandes J et al (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4(6):e121–e121
留言 (0)