Targeting cytokine networks in neuroinflammatory diseases

Tuzlak, S. et al. Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 22, 1210–1217 (2021).

Article  CAS  PubMed  Google Scholar 

Zhou, Y., Zhang, K., Ma, X. & Xie, Z. Efficacy and safety of secukinumab for the treatment of psoriasis: a meta-analysis of pivotal phase III trials. Dermatology 240, 271–281 (2024).

Article  CAS  PubMed  Google Scholar 

Zwicky, P., Unger, S. & Becher, B. Targeting interleukin-17 in chronic inflammatory disease: a clinical perspective. J. Exp. Med. 217, e20191123 (2020).

Article  PubMed  Google Scholar 

Zipp, F., Bittner, S. & Schafer, D. P. Cytokines as emerging regulators of central nervous system synapses. Immunity 56, 914–925 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundt, S., Greter, M. & Becher, B. The CNS mononuclear phagocyte system in health and disease. Neuron 110, 3497–3512 (2022).

Article  CAS  PubMed  Google Scholar 

Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro, M. et al. Meningeal gammadelta T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, D. et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 55, 159–173.e159 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, Y. et al. CCR5 closes the temporal window for memory linking. Nature 606, 146–152 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, L., Huh, J. R. & Choi, G. B. One messenger shared by two systems: how cytokines directly modulate neurons. Curr. Opin. Neurobiol. 80, 102708 (2023).

Article  CAS  PubMed  Google Scholar 

Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

Article  CAS  PubMed  Google Scholar 

Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e386 (2018).

Article  CAS  PubMed  Google Scholar 

Waisman, A., Liblau, R. S. & Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 14, 945–955 (2015).

Article  CAS  PubMed  Google Scholar 

Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

Article  CAS  PubMed  Google Scholar 

International Multiple Sclerosis Genetics, C. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

Article  Google Scholar 

Lantz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

Article  Google Scholar 

Lang, H. L. E. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

Article  CAS  PubMed  Google Scholar 

Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100.e123 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).

Article  CAS  PubMed  Google Scholar 

Bronge, M. et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 8, eabn1823 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schnell, A. et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298.e6223 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regen, T. et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci. Immunol. 6, eaaz6563 (2021).

Article  CAS  PubMed  Google Scholar 

Hauser, S. L. & Cree, B. A. C. Treatment of multiple sclerosis: a review. Am. J. Med. 133, 1380–1390.e1382 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

Article  CAS  PubMed  Google Scholar 

Ulutekin, C. et al. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep. Med. 5, 101351 (2024).

Article  CAS  PubMed  Google Scholar 

Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

Article  CAS  PubMed  Google Scholar 

Yshii, L. et al. IFN-gamma is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 4, e127001 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Di Liberto, G. et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping. Cell 175, 458–471.e419 (2018).

Article  PubMed  Google Scholar 

Falcao, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif