Seed priming with graphene oxide improves salinity tolerance and increases productivity of peanut through modulating multiple physiological processes

IPCC. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press; 2007.

Google Scholar 

IPCC. Climate Change 2014: mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press; 2014.

Google Scholar 

Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol. 2014;26:115–24.

Article  CAS  PubMed  Google Scholar 

Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–94.

Article  CAS  PubMed  Google Scholar 

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19:371–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paulucci NS, Medeot DB, Dardanelli MS, de Lema MG. Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia. Lipids. 2011;46:435–41.

Article  CAS  PubMed  Google Scholar 

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–67.

Article  CAS  PubMed  Google Scholar 

Jimenez-Lopez JC, Singh KB, Clemente A, Nelson MN, Ochatt S, Smith PMC. Editorial: legumes for global food security. Front Plant Sci. 2020;11:00926.

Article  Google Scholar 

Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi K, Yu J, Fodor N, Kaiser BN, Wong F-L, Valliyodan B, Considine MJ. Neglecting legumes has compromised human health and sustainable food production. Nat Plants. 2016;2:16112.

Article  PubMed  Google Scholar 

Si T, Wang X, Zhou Y, Zhang K, Xie W, Yuan H, Wang Y, Sun Y. Seed yield and quality responses of oilseed crops to simulated nitrogen deposition: a meta-analysis of field studies. GCB Bioenergy. 2022;14:959–71.

Article  CAS  Google Scholar 

Becana M, Matamoros MA, Udvardi M, Dalton DA. Recent insights into antioxidant defenses of legume root nodules. New Phytol. 2010;188:960–76.

Article  CAS  PubMed  Google Scholar 

Considine MJ, Siddique KHM, Foyer CH. Nature’s pulse power: legumes, food security and climate change. J Exp Bot. 2017;68:1815–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao J, Chen J, Beillouin D, Lambers H, Yang Y, Smith P, Zeng Z, Olesen JE, Zang H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat Commun. 2022;13:4926.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Liu Y, Zou X, Zhang X, Yu X, Wang Y, Si T. Rotational strip peanut/cotton intercropping improves agricultural production through modulating plant growth, root exudates, and soil microbial communities. Agric Ecosyst Environ. 2024;359:108767.

Article  CAS  Google Scholar 

Xu J, Chen Q, Cai Z, Ren Y, Zhao Y, Cheng J, Huang B. A feasibility study of producing a peanut oil matrix candidate reference material and its application to support monitoring of aflatoxins statues for public health purposes. Food Chem. 2018;268:395–401.

Article  CAS  PubMed  Google Scholar 

Cherif AO, Pepe C, Messaouda MB. Fatty acids profile of wild and cultivar Tunisian peanut oilseeds (A. Hypogaea L.) at different developmental stages. J Oleo Sci. 2023;72:379–87.

Article  CAS  PubMed  Google Scholar 

Davis JP, Sweigart DS, Price KM, Dean LL, Sanders TH. Refractive index and density measurements of peanut oil for determining oleic and linoleic acid contents. J Am Oil Chem Soc. 2013;90:199–206.

Article  CAS  Google Scholar 

Bruning B, Rozema J. Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp Bot. 2013;92:134–43.

Article  CAS  Google Scholar 

Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem. 2017;118:199–217.

Article  CAS  PubMed  Google Scholar 

Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain legumes and fear of salt stress: focus on mechanisms and management strategies. Int J Mol Sci. 2019;20.

Cao J, Chen Z, Wang L, Yan N, Lin J, Hou L, Zhao Y, Huang C, Wen T, Li C, Rahman Su, Liu Z, Qiao J, Zhao J, Wang J, Shi Y, Qin W, Si T, Wang Y, Tang K. Graphene enhances artemisinin production in the traditional medicinal plant Artemisia annua via dynamic physiological processes and miRNA regulation. Plant Commun. 2024;5(3):100742.

Chae S, Le T-H, Park CS, Choi Y, Kim S, Lee U, Heo E, Lee H, Kim YA, Kwon OS, Yoon H. Anomalous restoration of sp2 hybridization in graphene functionalization. Nanoscale. 2020;12:13351–9.

Article  CAS  PubMed  Google Scholar 

Thakur K, Kandasubramanian B. Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data. 2019;64:833–67.

Article  CAS  Google Scholar 

Singh K, Ohlan A, Pham VH, Balasubramaniyan R., Swati Varshney, Jinhee Jang et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale. 2013;5:2411–20.

Article  CAS  PubMed  Google Scholar 

Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene oxide-assisted promotion of plant growth and stability. Nanomater. 2020;10:758.

Chen J, Cao S, Xi C, Chen Y, Li X, Zhang L, Wang G, Chen Y, Chen Z. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators. Food Chem. 2018;239:911–9.

Article  CAS  PubMed  Google Scholar 

Lu K, Shen D, Dong S, Chen C, Lin S, Lu S, Xing B, Mao L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020;13:3198–205.

Article  CAS  Google Scholar 

Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RH. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Wang L, Qu J, Wang X, Huang F, Jiao Y, Zhang Y. Bi2O3/TiO2@reduced graphene oxide with enzyme-like properties efficiently inactivates Pseudomonas syringae Pv. Tomato DC3000 and enhances abiotic stress tolerance in tomato. Environ Science: Nano. 2022;9:118–32.

CAS  Google Scholar 

Gao M, Yang Y, Song Z. Effects of graphene oxide on cadmium uptake and photosynthesis performance in wheat seedlings. Ecotoxicol Environ Saf. 2019;173:165–73.

Article  CAS  PubMed  Google Scholar 

Zhao J, Wang Z, White JC, Xing B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ Sci Technol. 2014;48:9995–10009.

Article  CAS  PubMed  Google Scholar 

Ahmad SZN, Wan Salleh WN, Ismail AF, Yusof N, Yusop M, Aziz MZ, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms. Chemosphere. 2020;248:126008.

Article  CAS  PubMed  Google Scholar 

Yang K, Li Y, Tan X, Peng R, Liu Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small. 2013;9:1492–503.

Article  CAS  PubMed  Google Scholar 

Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol. 2016;192:38–46.

Article  CAS  PubMed  Google Scholar 

Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, A

留言 (0)

沒有登入
gif