Fluorescence assay for aflatoxin B1 based on aptamer-binding triggered DNAzyme activity

Beitollahi H, Tajik S, Dourandish Z, Zhang K, Van Quyet L, Jang HW, Kim SY, Shokouhimehr M. Recent advances in the aptamer-based electrochemical biosensors for detecting aflatoxin B1 and its pertinent metabolite aflatoxin M1. Sensors. 2020;20(11):3256–68. https://doi.org/10.3390/s20113256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films. 2010;519(3):1213–8. https://doi.org/10.1016/j.tsf.2010.08.071.

Article  CAS  Google Scholar 

Dai Y, Huang K, Zhang B, Zhu L, Xu W. Aflatoxin B1-induced epigenetic alterations: an overview. Food Chem Toxicol. 2017;109:683–9. https://doi.org/10.1016/j.fct.2017.06.034.

Article  CAS  PubMed  Google Scholar 

Kotinagu K, Mohanamba T, Kumari LR. Assessment of aflatoxin B1 in livestock feed and feed ingredients by high-performance thin layer chromatography. Vet World. 2015;8(12):1396–9. https://doi.org/10.14202/vetworld.2015.1396-1399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zitomer N, Rybak ME, Li Z, Walters MJ, Holman MR. Determination of aflatoxin B1 in smokeless tobacco products by use of UHPLC-MS/MS. J Agric Food Chem. 2015;63(41):9131–8. https://doi.org/10.1021/acs.jafc.5b02622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. https://doi.org/10.1038/346818a0.

Article  CAS  PubMed  Google Scholar 

Lv M, Li F, Du Y, Guo X, Zhang P, Liu Y. Ratiometric electrochemical aptasensor for AFB1 detection in peanut and peanut products. Int J Electrochem Sc. 2023;18(2):9–15. https://doi.org/10.1016/j.ijoes.2023.01.006.

Article  Google Scholar 

Jia Y, Wu F, Liu P, Zhou G, Yu B, Lou X, Xia F. A label-free fluorescent aptasensor for the detection of aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta. 2019;198:71–7. https://doi.org/10.1016/j.talanta.2019.01.078.

Article  CAS  PubMed  Google Scholar 

Lerdsri J, Chananchana W, Upan J, Sridara T, Jakmunee J. Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sensors Actuat B-Chem. 2020;320:128356. https://doi.org/10.1016/j.snb.2020.128356.

Article  CAS  Google Scholar 

Le LC, Cruz-Aguado JA, Penner GA. DNA ligands for aflatoxin and zearalenone. International Patent. 2011;WO2011020198-A1.

Wang C, Liu L, Zhao Q. Low temperature greatly enhancing responses of aptamer electrochemical sensor for aflatoxin B1 using aptamer with short stem. ACS Sensors. 2020;5(10):3246. https://doi.org/10.1021/acssensors.0c01572.

Article  CAS  PubMed  Google Scholar 

Zhang C, Dou X, Zhang L, Sun M, Zhao M, OuYang Z, Kong D, Antonio FL, Yang M. A rapid label-free fluorescent aptasensor PicoGreen-based strategy for aflatoxin B1 detection in traditional Chinese medicines. Toxins. 2018;10(3):101. https://doi.org/10.3390/toxins10030101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Liu D, Meng S, Dong N, Liu C, Wei Y, You T. Signal-enhanced strategy for ratiometric aptasensing of aflatoxin B1: plasmon-modulated competition between photoelectrochemistry-driven and electrochemistry-driven redox of methylene blue. Biosens Bioelectron. 2022;218:114759. https://doi.org/10.1016/j.bios.2022.114759.

Article  CAS  PubMed  Google Scholar 

Mousivand M, Javan-Nikkhah M, Anfossi L, Di Nardo F, Salina M, Bagherzadeh K. High performance aptasensing platform development through in silico aptamer engineering for aflatoxin B1 monitoring. Food Control. 2023;145:109418. https://doi.org/10.1016/j.foodcont.2022.109418.

Article  CAS  Google Scholar 

Zhao L, Suo Z, He B, Huang Y, Liu Y, Wei M, Jin H. A fluorescent aptasensor based on nitrogen-doped carbon supported palladium and exonuclease III-assisted signal amplification for sensitive detection of AFB1. Anal Chim Acta. 2022;1226:340272. https://doi.org/10.1016/j.aca.2022.340272.

Article  CAS  PubMed  Google Scholar 

Nejad ASM, Ghannad MS, Kamkar A. Determination of aflatoxin B1 levels in Iranian and Indian spices by ELISA method. Toxin Rev. 2014;33(4):151–4. https://doi.org/10.3109/15569543.2014.942319.

Article  CAS  Google Scholar 

Hollenstein M. DNA Catalysis: the chemical repertoire of DNAzymes. Molecules. 2015;20(11):20777–804. https://doi.org/10.3390/molecules201119730.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breaker RR. In vitro selection of catalytic polynucleotides. Chem Rev. 1997;97(2):371–90. https://doi.org/10.1021/cr960008k.

Article  CAS  PubMed  Google Scholar 

Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1(4):223–9. https://doi.org/10.1016/1074-5521(94)90014-0.

Article  CAS  PubMed  Google Scholar 

Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, Zhang H. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal Chem. 2018;90:190–207. https://doi.org/10.1021/acs.analchem.7b04926.

Article  CAS  PubMed  Google Scholar 

Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Acc Chem Res. 2019;52:3275–86. https://doi.org/10.1021/acs.accounts.9b00419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev. 2021;50:8954–94. https://doi.org/10.1039/d1cs00240f.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu G, Wang C, Yu H, Li Y, Zhao Q, Zhou X, Li C, Liu M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptame. Nucleic Acids Res. 2023;51:7666–74. https://doi.org/10.1093/nar/gkad541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goud KY, Catanante G, Hayat A, Satyanarayana M, Gobi KV, Marty JL. Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sensors Actuat B-Chem. 2016;235:466–73. https://doi.org/10.1016/j.snb.2016.05.112.

Article  CAS  Google Scholar 

Zhan H, Yang S, Li C, Liu R, Chen W, Wang X, Zhao Y, Xu K. A highly sensitive competitive aptasensor for AFB1 detection based on an exonuclease-assisted target recycling amplification strategy. Anal Methods. 2022;15(1):70–8. https://doi.org/10.1039/d2ay01617f.

Article  CAS  PubMed  Google Scholar 

Wang C, Li Y, Zhao Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens Bioelectron. 2019;144:111641. https://doi.org/10.1016/j.bios.2019.111641.

Article  CAS  PubMed  Google Scholar 

Sabet FS, Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem. 2017;220:527–32. https://doi.org/10.1016/j.foodchem.2016.10.004.

Article  CAS  PubMed  Google Scholar 

Zheng M, Liu H, Ye J, Ni B, Xie Y, Wang S. Target-responsive aptamer-cross-linked hydrogel sensors for the visual quantitative detection of aflatoxin B1 using exonuclease I-triggered target cyclic amplification. Food Chem X. 2022;15:100395. https://doi.org/10.1016/j.fochx.2022.100395.

Article  CAS 

留言 (0)

沒有登入
gif