Govorushko S. Human-insect interactions. Boca Raton, FL: CRC Press; 2018.
Shaw WR, Catteruccia F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat Microbiol. 2018;4(1):20–34.
Article PubMed PubMed Central Google Scholar
Lefevre T, Vantaux A, Dabire KR, Mouline K, Cohuet A. Non-genetic determinants of mosquito competence for malaria parasites. PLOS Pathog. 2013;9(6):e1003365.
Article CAS PubMed PubMed Central Google Scholar
Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology. 2022;103(8):e3685.
Khezzani B, Baymakova M, Khechekhouche E, Tsachev I. Global warming and mosquito-borne diseases in Africa: A narrative review. Pan Afr Med J. 2023;44:70.
Article PubMed PubMed Central Google Scholar
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, et al. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc R Soc B. 2014;2024(291):20232097.
Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol. 2004;7(1):39–51.
Burraco P, Orizaola G, Monaghan P, Metcalfe NB. Climate change and ageing in ectotherms. Glob Change Biol. 2020;26(10):5371–81.
Mohammed A, Chadee DD. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica. 2011;119(1):38–43.
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int J Environ Res Public Health. 2021;18(14):7255.
Article CAS PubMed PubMed Central Google Scholar
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, et al. Effects of elevated temperatures on the growth and development of adult Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. J Med Entomol. 2022;59(4):1413–20.
Article CAS PubMed PubMed Central Google Scholar
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;22(10):1690–708.
Article PubMed PubMed Central Google Scholar
Reiskind MH, Zarrabi AA. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito. Aedes albopictus J Insect Physiol. 2012;58(7):911–7.
Alto BW, Bettinardi D. Temperature and Dengue virus infection in mosquitoes: Independent effects on the immature and adult stages. Am J Trop Med Hyg. 2013;88(3):497–505.
Article PubMed PubMed Central Google Scholar
Mackay AJ, Yan J, Kim C-H, Barreaux AMG, Stone CM. Larval diet and temperature alter mosquito immunity and development: Using body size and developmental traits to track carry-over effects on longevity. Parasit Vectors. 2023;16(1):434.
Article CAS PubMed PubMed Central Google Scholar
Michael, Raymond, Melanie. Thermodynamic effects on organismal performance: Is hotter better? Physiol Biochem Zool. 2010;83(2):197–206.
Neven LG. Physiological responses of insects to heat. Postharvest Biol Tec. 2000;21(1):103–11.
Barr JS, Estevez-Lao TY, Khalif M, Saksena S, Yarlagadda S, Farah O, et al. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. J Insect Physiol. 2023;148:104525.
Article CAS PubMed Google Scholar
Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors. 2018;11(1):485.
Article PubMed PubMed Central Google Scholar
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, et al. Complex effects of temperature on mosquito immune function. Proc Biol Sci. 2012;279(1741):3357–66.
CAS PubMed PubMed Central Google Scholar
Murdock CC, Moller-Jacobs LL, Thomas MB. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc Biol Sci. 2013;280(1770):20132030.
PubMed PubMed Central Google Scholar
Muturi EJ, Nyakeriga A, Blackshear M. Temperature-mediated differential expression of immune and stress-related genes in Aedes aegypti larvae. J Am Mosq Control Assoc. 2012;28(2):79–83.
Ferguson LV, Adamo SA. From perplexing to predictive: Are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol. 2023;226(4):jeb244911.
Paaijmans KP, Blanford S, Chan BHK, Thomas MB. Warmer temperatures reduce the vectorial capacity of malaria mosquitoes. Biol Lett. 2012;8(3):465–8.
Styer LM, Carey JR, Wang JL, Scott TW. Mosquitoes do senesce: Departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007;76(1):111–7.
Christensen BM, Lafond MM, Christensen LA. Defense reactions of mosquitos to filarial worms - effect of host age on the immune-response to Dirofilaria-immitis microfilariae. J Parasitol. 1986;72(2):212–5.
Article CAS PubMed Google Scholar
Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12(1):123.
Article PubMed PubMed Central Google Scholar
Miazgowicz KL, Shocket MS, Ryan SJ, Villena OC, Hall RJ, Owen J, et al. Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi. Proc R Soc B. 1931;2020(287):20201093.
Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J. 2004;3(1):13.
Article PubMed PubMed Central Google Scholar
Keil G, Cummings E, De Magalhães JP. Being cool: How body temperature influences ageing and longevity. Biogerontology. 2015;16(4):383–97.
Article CAS PubMed PubMed Central Google Scholar
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLOS Pathog. 2024;20(1):e1011935.
Article CAS PubMed PubMed Central Google Scholar
Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J Parasitol. 2003;89(1):62–9.
Yan Y, Hillyer JF. Complement-like proteins TEP1, TEP3 and TEP4 are positive regulators of periostial hemocyte aggregation in the mosquito Anopheles gambiae. Insect Biochem Mol Biol. 2019;107:1–9.
Article CAS PubMed Google Scholar
R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
Therneau TM, Grambsch PM, SpringerLink. Modeling survival data: Extending the Cox model. 1st 2000. ed. New York, NY: Springer New York : Imprint: Springer; 2000.
Dunkler D, Ploner M, Schemper M, Heinze G. Weighted Cox regression using the R package coxphw. J Stat Softw. 2018;84(2):1–26.
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: Evidence of adaptive decoupling in mosquitoes. Parasit Vectors. 2017;10(1):367.
Article PubMed PubMed Central Google Scholar
Zeileis A, Kleiber C, Jackman S. Regression models for count data in R. J Stat Softw. 2008;27(8):1–25.
留言 (0)