Warmer environmental temperature accelerates aging in mosquitoes, decreasing longevity and worsening infection outcomes

Govorushko S. Human-insect interactions. Boca Raton, FL: CRC Press; 2018.

Book  Google Scholar 

Shaw WR, Catteruccia F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat Microbiol. 2018;4(1):20–34.

Article  PubMed  PubMed Central  Google Scholar 

Lefevre T, Vantaux A, Dabire KR, Mouline K, Cohuet A. Non-genetic determinants of mosquito competence for malaria parasites. PLOS Pathog. 2013;9(6):e1003365.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology. 2022;103(8):e3685.

Article  PubMed  Google Scholar 

Khezzani B, Baymakova M, Khechekhouche E, Tsachev I. Global warming and mosquito-borne diseases in Africa: A narrative review. Pan Afr Med J. 2023;44:70.

Article  PubMed  PubMed Central  Google Scholar 

Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, et al. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc R Soc B. 2014;2024(291):20232097.

Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol. 2004;7(1):39–51.

Article  Google Scholar 

Burraco P, Orizaola G, Monaghan P, Metcalfe NB. Climate change and ageing in ectotherms. Glob Change Biol. 2020;26(10):5371–81.

Article  Google Scholar 

Mohammed A, Chadee DD. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica. 2011;119(1):38–43.

Article  PubMed  Google Scholar 

Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int J Environ Res Public Health. 2021;18(14):7255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, et al. Effects of elevated temperatures on the growth and development of adult Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. J Med Entomol. 2022;59(4):1413–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;22(10):1690–708.

Article  PubMed  PubMed Central  Google Scholar 

Reiskind MH, Zarrabi AA. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito. Aedes albopictus J Insect Physiol. 2012;58(7):911–7.

Alto BW, Bettinardi D. Temperature and Dengue virus infection in mosquitoes: Independent effects on the immature and adult stages. Am J Trop Med Hyg. 2013;88(3):497–505.

Article  PubMed  PubMed Central  Google Scholar 

Mackay AJ, Yan J, Kim C-H, Barreaux AMG, Stone CM. Larval diet and temperature alter mosquito immunity and development: Using body size and developmental traits to track carry-over effects on longevity. Parasit Vectors. 2023;16(1):434.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michael, Raymond, Melanie. Thermodynamic effects on organismal performance: Is hotter better? Physiol Biochem Zool. 2010;83(2):197–206.

Neven LG. Physiological responses of insects to heat. Postharvest Biol Tec. 2000;21(1):103–11.

Article  CAS  Google Scholar 

Barr JS, Estevez-Lao TY, Khalif M, Saksena S, Yarlagadda S, Farah O, et al. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. J Insect Physiol. 2023;148:104525.

Article  CAS  PubMed  Google Scholar 

Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors. 2018;11(1):485.

Article  PubMed  PubMed Central  Google Scholar 

Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, et al. Complex effects of temperature on mosquito immune function. Proc Biol Sci. 2012;279(1741):3357–66.

CAS  PubMed  PubMed Central  Google Scholar 

Murdock CC, Moller-Jacobs LL, Thomas MB. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc Biol Sci. 2013;280(1770):20132030.

PubMed  PubMed Central  Google Scholar 

Muturi EJ, Nyakeriga A, Blackshear M. Temperature-mediated differential expression of immune and stress-related genes in Aedes aegypti larvae. J Am Mosq Control Assoc. 2012;28(2):79–83.

Article  PubMed  Google Scholar 

Ferguson LV, Adamo SA. From perplexing to predictive: Are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol. 2023;226(4):jeb244911.

Article  PubMed  Google Scholar 

Paaijmans KP, Blanford S, Chan BHK, Thomas MB. Warmer temperatures reduce the vectorial capacity of malaria mosquitoes. Biol Lett. 2012;8(3):465–8.

Article  PubMed  Google Scholar 

Styer LM, Carey JR, Wang JL, Scott TW. Mosquitoes do senesce: Departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007;76(1):111–7.

Article  PubMed  Google Scholar 

Christensen BM, Lafond MM, Christensen LA. Defense reactions of mosquitos to filarial worms - effect of host age on the immune-response to Dirofilaria-immitis microfilariae. J Parasitol. 1986;72(2):212–5.

Article  CAS  PubMed  Google Scholar 

Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12(1):123.

Article  PubMed  PubMed Central  Google Scholar 

Miazgowicz KL, Shocket MS, Ryan SJ, Villena OC, Hall RJ, Owen J, et al. Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi. Proc R Soc B. 1931;2020(287):20201093.

Smith DL, McKenzie FE. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J. 2004;3(1):13.

Article  PubMed  PubMed Central  Google Scholar 

Keil G, Cummings E, De Magalhães JP. Being cool: How body temperature influences ageing and longevity. Biogerontology. 2015;16(4):383–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLOS Pathog. 2024;20(1):e1011935.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J Parasitol. 2003;89(1):62–9.

Article  PubMed  Google Scholar 

Yan Y, Hillyer JF. Complement-like proteins TEP1, TEP3 and TEP4 are positive regulators of periostial hemocyte aggregation in the mosquito Anopheles gambiae. Insect Biochem Mol Biol. 2019;107:1–9.

Article  CAS  PubMed  Google Scholar 

R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

Therneau TM, Grambsch PM, SpringerLink. Modeling survival data: Extending the Cox model. 1st 2000. ed. New York, NY: Springer New York : Imprint: Springer; 2000.

Dunkler D, Ploner M, Schemper M, Heinze G. Weighted Cox regression using the R package coxphw. J Stat Softw. 2018;84(2):1–26.

Article  Google Scholar 

League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: Evidence of adaptive decoupling in mosquitoes. Parasit Vectors. 2017;10(1):367.

Article  PubMed  PubMed Central  Google Scholar 

Zeileis A, Kleiber C, Jackman S. Regression models for count data in R. J Stat Softw. 2008;27(8):1–25.

留言 (0)

沒有登入
gif