Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography

Chida K, Sai M, Saito H, Takase K, Zuguchi M, Sasaki M, Sato T. Relationship between the pixel value in digital subtraction angiography and iodine concentration: study in high iodine concentration with original phantom. Tohoku J Exp Med. 2000;190(3):169–76. https://doi.org/10.1620/tjem.190.169.

Article  PubMed  CAS  Google Scholar 

Haga Y, Chida K, Sota M, Kaga Y, Abe M, Inaba Y, Suzuki M, Meguro T, Zuguchi M. Hybrid operating room system for the treatment of thoracic and abdominal aortic aneurysms: evaluation of the radiation dose received by patients. Diagnostics (Basel). 2020;10(10):846. https://doi.org/10.3390/diagnostics10100846.

Article  PubMed  CAS  Google Scholar 

Hawkins IF, Caridi JG. Carbon dioxide (CO2) digital subtraction angiography: 26-year experience at the University of Florida. Eur Radiol. 1998;8:391–402. https://doi.org/10.1007/s003300050400.

Article  PubMed  CAS  Google Scholar 

Heye S, Maleux G, Marchal GJ. Upper-extremity venography: CO2 versus iodinated contrast material. Radiology. 2006;241:291–7. https://doi.org/10.1148/radiol.2411050714.

Article  PubMed  Google Scholar 

Sullivan KL, Bonn J, Shapiro MJ, et al. Venography with carbon dioxide as a contrast agent. Cardiovasc Intervent Radiol. 1995;18:141–5. https://doi.org/10.1007/BF00204138.

Article  PubMed  CAS  Google Scholar 

Hahn ST, Pfammatter T, Cho KJ. Carbon dioxide gas as a venous contrast agent to guide upper-arm insertion of central venous catheters. Cardiovasc Intervent Radiol. 1995;18:146–9. https://doi.org/10.1007/BF00204139.

Article  PubMed  CAS  Google Scholar 

Shaw DR, Kessel DO. The current status of the use of carbon dioxide in diagnostic and interventional angiographic procedures. Cardiovasc Intervent Radiol. 2006;29:323–31. https://doi.org/10.1007/s00270-005-0092-2.

Article  PubMed  Google Scholar 

Tasaki Y, Sueyoshi E, Takamatsu H, Matsushima Y, Miyamura S, Sakamoto I, Mochizuki Y, Uetani M. The outcomes of carbon dioxide digital subtraction angiography for percutaneous transluminal balloon angioplasty of access circuits and venous routes in hemodialysis patients. Medicine (Baltimore). 2020;99(36): e21890. https://doi.org/10.1097/MD.0000000000021890.

Article  PubMed  CAS  Google Scholar 

Beese RC, Bees NR, Belli AM. Renal angiography using carbon dioxide. Br J Radiol. 2000;73(865):3–6. https://doi.org/10.1259/bjr.73.865.10721312.

Article  PubMed  CAS  Google Scholar 

Mary R, Mohammad AH, Indranil D, Edward TDH, Jonathan F, Arul G. The use of carbon dioxide angiography for renal sympathetic denervation: a technical report. Br J Radiol. 2016;89(1068):20160311. https://doi.org/10.1259/bjr.20160311.

Article  Google Scholar 

Cho KJ. Carbon dioxide angiography: Scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80. https://doi.org/10.5758/vsi.2015.31.3.67.

Article  PubMed  PubMed Central  Google Scholar 

Farrow R, Jones AM, Wallace DA, Virjee JP. Air versus carbon dioxide insufflation in double contrast barium enemas: the role of active gaseous drainage. Br J Radiol. 1995;68(812):838–40. https://doi.org/10.1259/0007-1285-68-812-838.

Article  PubMed  CAS  Google Scholar 

Sueyoshi E, Nagayama H, Sakamoto I, Uetani M. Carbon dioxide digital subtraction angiography as an option for detection of endoleaks in endovascular abdominal aortic aneurysm repair procedure. Vasc Surg. 2015;61(2):298–303. https://doi.org/10.1016/j.jvs.2014.07.088.

Article  Google Scholar 

Zannoli R, Bianchini D, Rossi PL, et al. Understanding the basic concepts of CO2 angiography. J Appl Phys. 2016;120(19): 194904. https://doi.org/10.1063/1.4968170.

Article  CAS  Google Scholar 

Shinmura K, Baba Y, Hayashi S, Ikeda S, Motomura E, Kiyao Y, Nakajo M. Evaluation of visibility of celiac and renal arteries on digital subtraction angiography using iodine, gadolinium and carbon dioxide contrast agents: a porcine experimental study. Med J Kagoshima Univ. 2014;65(2–3):25–35.

Google Scholar 

Kakuta K, Fukuda A, Nemoto S, Yabe S, Ookawara Y, Ikeda M. Radiation dose reduction in carbon dioxide digital subtraction angiography: a phantom study. Jpn Soc Educ Radiol Technol. 2023;11:25–32.

Google Scholar 

Back MR, Caridi JG, Hawkins IF Jr, Seeger JM. Angiography with carbon dioxide (CO2). Surg Clin North Am. 1998;78(4):575–91. https://doi.org/10.1016/s0039-6109(05)70335-2.

Article  PubMed  CAS  Google Scholar 

Kump KS, Sachs PB, Wilson DL. Digital subtraction peripheral angiography using image stacking: initial clinical results. Med Phys. 2001;28(7):1482–92. https://doi.org/10.1118/1.1350676.

Article  PubMed  CAS  Google Scholar 

Chida K, Kaga Y, Haga Y, Takeda K, Zuguchi M. Quality control phantom for flat panel detector x-ray systems. Health Phys. 2013;104(1):97–101. https://doi.org/10.1097/HP.0b013e3182659c72.

Article  PubMed  CAS  Google Scholar 

Chida K, Kato M, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Optimizing patient radiation dose in intervention procedures. Acta Radiol. 2010;51(1):33–9. https://doi.org/10.3109/02841850903229141.

Article  PubMed  Google Scholar 

Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401. https://doi.org/10.1120/jacmp.v17i4.6231.

Article  PubMed  PubMed Central  Google Scholar 

Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol. 2022;15(2):101–15. https://doi.org/10.1007/s12194-022-00660-8.

Article  PubMed  Google Scholar 

Haga Y, Chida K, Inaba Y, Kaga Y, Meguro T, Zuguchi M. A rotatable quality control phantom for evaluating the performance of flat panel detectors in imaging moving objects. J Digit Imaging. 2016;29(1):38–42. https://doi.org/10.1007/s10278-015-9816-2.

Article  PubMed  Google Scholar 

Hurlburt ET, Hanratty TJ. Prediction of the transition from stratified to slug and plug flow for long pipes. Int J Multiph Flow. 2002;28(5):707–29. https://doi.org/10.1016/S0301-9322(02)00009-5.

Article  CAS  Google Scholar 

Kyung JC. Carbon dioxide angiography: scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80. https://doi.org/10.5758/vsi.2015.31.3.67.

Article  Google Scholar 

Song K, Cho D, Shinn K, Charlton E, Cho K. Gas dynamics in CO2 angiography: in vitro evaluation in a circulatory system model. Invest Radiol. 1999;34(2):151–5. https://doi.org/10.1097/00004424-199902000-00008.

Article  PubMed  CAS  Google Scholar 

Baker O. Design of pipe lines for simultaneous flow of oil and gas. Oil and Gas J. 1954;53:185–90. https://doi.org/10.2118/323-G.

Article  Google Scholar 

Filippo S, Eugenio N, Carla A, Valentina C, Mariella M, Romano Z. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography. J Invasive Cardiol. 2015;27(1):20–6 (PMID: 25589696).

Google Scholar 

Abdelbary MH, Mohamed AE, Abdel-Hamid A. Accuracy and safety of CO2 digital subtraction angiography during endovascular treatment of symptomatic peripheral artery occlusive disease A prospective study on Egyptian patients. Egypt J Radiol Nucl Med. 2018;49(1):76–84. https://doi.org/10.1016/j.ejrnm.2017.08.014.

Article  Google Scholar 

Nishiki M, Shiraishi K, Sakaguchi T, Nambu K. Method for reducing noise in X-ray images by averaging pixels based on the normalized difference with the relevant pixel. Radiol Phys Technol. 2008;1(2):188–95. https://doi.org/10.1007/s12194-008-0028-z.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif