Chida K, Sai M, Saito H, Takase K, Zuguchi M, Sasaki M, Sato T. Relationship between the pixel value in digital subtraction angiography and iodine concentration: study in high iodine concentration with original phantom. Tohoku J Exp Med. 2000;190(3):169–76. https://doi.org/10.1620/tjem.190.169.
Article PubMed CAS Google Scholar
Haga Y, Chida K, Sota M, Kaga Y, Abe M, Inaba Y, Suzuki M, Meguro T, Zuguchi M. Hybrid operating room system for the treatment of thoracic and abdominal aortic aneurysms: evaluation of the radiation dose received by patients. Diagnostics (Basel). 2020;10(10):846. https://doi.org/10.3390/diagnostics10100846.
Article PubMed CAS Google Scholar
Hawkins IF, Caridi JG. Carbon dioxide (CO2) digital subtraction angiography: 26-year experience at the University of Florida. Eur Radiol. 1998;8:391–402. https://doi.org/10.1007/s003300050400.
Article PubMed CAS Google Scholar
Heye S, Maleux G, Marchal GJ. Upper-extremity venography: CO2 versus iodinated contrast material. Radiology. 2006;241:291–7. https://doi.org/10.1148/radiol.2411050714.
Sullivan KL, Bonn J, Shapiro MJ, et al. Venography with carbon dioxide as a contrast agent. Cardiovasc Intervent Radiol. 1995;18:141–5. https://doi.org/10.1007/BF00204138.
Article PubMed CAS Google Scholar
Hahn ST, Pfammatter T, Cho KJ. Carbon dioxide gas as a venous contrast agent to guide upper-arm insertion of central venous catheters. Cardiovasc Intervent Radiol. 1995;18:146–9. https://doi.org/10.1007/BF00204139.
Article PubMed CAS Google Scholar
Shaw DR, Kessel DO. The current status of the use of carbon dioxide in diagnostic and interventional angiographic procedures. Cardiovasc Intervent Radiol. 2006;29:323–31. https://doi.org/10.1007/s00270-005-0092-2.
Tasaki Y, Sueyoshi E, Takamatsu H, Matsushima Y, Miyamura S, Sakamoto I, Mochizuki Y, Uetani M. The outcomes of carbon dioxide digital subtraction angiography for percutaneous transluminal balloon angioplasty of access circuits and venous routes in hemodialysis patients. Medicine (Baltimore). 2020;99(36): e21890. https://doi.org/10.1097/MD.0000000000021890.
Article PubMed CAS Google Scholar
Beese RC, Bees NR, Belli AM. Renal angiography using carbon dioxide. Br J Radiol. 2000;73(865):3–6. https://doi.org/10.1259/bjr.73.865.10721312.
Article PubMed CAS Google Scholar
Mary R, Mohammad AH, Indranil D, Edward TDH, Jonathan F, Arul G. The use of carbon dioxide angiography for renal sympathetic denervation: a technical report. Br J Radiol. 2016;89(1068):20160311. https://doi.org/10.1259/bjr.20160311.
Cho KJ. Carbon dioxide angiography: Scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80. https://doi.org/10.5758/vsi.2015.31.3.67.
Article PubMed PubMed Central Google Scholar
Farrow R, Jones AM, Wallace DA, Virjee JP. Air versus carbon dioxide insufflation in double contrast barium enemas: the role of active gaseous drainage. Br J Radiol. 1995;68(812):838–40. https://doi.org/10.1259/0007-1285-68-812-838.
Article PubMed CAS Google Scholar
Sueyoshi E, Nagayama H, Sakamoto I, Uetani M. Carbon dioxide digital subtraction angiography as an option for detection of endoleaks in endovascular abdominal aortic aneurysm repair procedure. Vasc Surg. 2015;61(2):298–303. https://doi.org/10.1016/j.jvs.2014.07.088.
Zannoli R, Bianchini D, Rossi PL, et al. Understanding the basic concepts of CO2 angiography. J Appl Phys. 2016;120(19): 194904. https://doi.org/10.1063/1.4968170.
Shinmura K, Baba Y, Hayashi S, Ikeda S, Motomura E, Kiyao Y, Nakajo M. Evaluation of visibility of celiac and renal arteries on digital subtraction angiography using iodine, gadolinium and carbon dioxide contrast agents: a porcine experimental study. Med J Kagoshima Univ. 2014;65(2–3):25–35.
Kakuta K, Fukuda A, Nemoto S, Yabe S, Ookawara Y, Ikeda M. Radiation dose reduction in carbon dioxide digital subtraction angiography: a phantom study. Jpn Soc Educ Radiol Technol. 2023;11:25–32.
Back MR, Caridi JG, Hawkins IF Jr, Seeger JM. Angiography with carbon dioxide (CO2). Surg Clin North Am. 1998;78(4):575–91. https://doi.org/10.1016/s0039-6109(05)70335-2.
Article PubMed CAS Google Scholar
Kump KS, Sachs PB, Wilson DL. Digital subtraction peripheral angiography using image stacking: initial clinical results. Med Phys. 2001;28(7):1482–92. https://doi.org/10.1118/1.1350676.
Article PubMed CAS Google Scholar
Chida K, Kaga Y, Haga Y, Takeda K, Zuguchi M. Quality control phantom for flat panel detector x-ray systems. Health Phys. 2013;104(1):97–101. https://doi.org/10.1097/HP.0b013e3182659c72.
Article PubMed CAS Google Scholar
Chida K, Kato M, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Optimizing patient radiation dose in intervention procedures. Acta Radiol. 2010;51(1):33–9. https://doi.org/10.3109/02841850903229141.
Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401. https://doi.org/10.1120/jacmp.v17i4.6231.
Article PubMed PubMed Central Google Scholar
Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol. 2022;15(2):101–15. https://doi.org/10.1007/s12194-022-00660-8.
Haga Y, Chida K, Inaba Y, Kaga Y, Meguro T, Zuguchi M. A rotatable quality control phantom for evaluating the performance of flat panel detectors in imaging moving objects. J Digit Imaging. 2016;29(1):38–42. https://doi.org/10.1007/s10278-015-9816-2.
Hurlburt ET, Hanratty TJ. Prediction of the transition from stratified to slug and plug flow for long pipes. Int J Multiph Flow. 2002;28(5):707–29. https://doi.org/10.1016/S0301-9322(02)00009-5.
Kyung JC. Carbon dioxide angiography: scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80. https://doi.org/10.5758/vsi.2015.31.3.67.
Song K, Cho D, Shinn K, Charlton E, Cho K. Gas dynamics in CO2 angiography: in vitro evaluation in a circulatory system model. Invest Radiol. 1999;34(2):151–5. https://doi.org/10.1097/00004424-199902000-00008.
Article PubMed CAS Google Scholar
Baker O. Design of pipe lines for simultaneous flow of oil and gas. Oil and Gas J. 1954;53:185–90. https://doi.org/10.2118/323-G.
Filippo S, Eugenio N, Carla A, Valentina C, Mariella M, Romano Z. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography. J Invasive Cardiol. 2015;27(1):20–6 (PMID: 25589696).
Abdelbary MH, Mohamed AE, Abdel-Hamid A. Accuracy and safety of CO2 digital subtraction angiography during endovascular treatment of symptomatic peripheral artery occlusive disease A prospective study on Egyptian patients. Egypt J Radiol Nucl Med. 2018;49(1):76–84. https://doi.org/10.1016/j.ejrnm.2017.08.014.
Nishiki M, Shiraishi K, Sakaguchi T, Nambu K. Method for reducing noise in X-ray images by averaging pixels based on the normalized difference with the relevant pixel. Radiol Phys Technol. 2008;1(2):188–95. https://doi.org/10.1007/s12194-008-0028-z.
留言 (0)