FACT inhibitor CBL0137, administered in an optimized schedule, potentiates radiation therapy for glioblastoma by suppressing DNA damage repair

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25(12 Suppl 2):iv1–iv99. https://doi.org/10.1093/neuonc/noad149

Article  PubMed  Google Scholar 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

Article  CAS  PubMed  Google Scholar 

Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127(2):415–426. https://doi.org/10.1172/JCI89587

Article  PubMed  PubMed Central  Google Scholar 

Correa DD (2010) Neurocognitive function in brain tumors. Curr Neurol Neurosci Rep 10(3):232–239. https://doi.org/10.1007/s11910-010-0108-4

Article  PubMed  Google Scholar 

Barone TA, Burkhart CA, Safina A, Haderski G, Gurova KV, Purmal AA, Gudkov AV, Plunkett RJ (2017) Anti-cancer drug candidate CBL0137, which inhibits histone chaperone FACT, is efficacious in preclinical orthotopic models of temozolomide -responsive and -resistant glioblastoma. Neuro Oncol 19(2):186–196. https://doi.org/10.1093/neuonc/now141

Article  CAS  PubMed  Google Scholar 

Dermawan JK, Hitomi M, Silver DJ, Wu Q, Sandlesh P, Sloan AE, Purmal AA, Gurova KV, Rich JN, Lathia JD, Stark GR, Venere M (2016) Pharmacological targeting of the histone chaperone complex FACT preferentially eliminates glioblastoma stem cells and prolongs survival in preclinical models. Cancer Res 2016 76(8):2432–2442. https://doi.org/10.1158/0008-5472.CAN-15-2162

Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, Saranadasa M, Bosykh DA, Commane M, Guryanova OA, Pal S, Safina A, Sviridov S, Koman IE, Veith J, Komar AA, Gudkov AV, Gurova KV (2011) Curaxins: Anticancer compounds that simultaneously suppress NF-κB and activate p53 by Targeting FACT. Sci Transl Med 3(95):1–14. https://doi.org/10.1126/scitranslmed.3002530

Article  CAS  Google Scholar 

Song H, Xi S, Chen Y, Pramanik S, Zeng J, Roychoudhury S, Harris H, Akbar A, Elhag SS, Coulter DW, Ray S, Bhakat KK (2021) Histone chaperone FACT complex inhibitor CBL0137 interferes with DNA damage repair and enhances sensitivity of medulloblastoma to chemotherapy and radiation. Cancer Lett 520:201–212. https://doi.org/10.1016/j.canlet.2021.07.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tallman MM, Zalenski AA, Deighen AM, Schrock MS, Mortach S, Grubb TM, Kastury PS, Huntoon K, Summers MK, Venere M (2021) The small molecule drug CBL0137 increases the level of DNA damage and the efficacy of radiotherapy for glioblastoma. Cancer Lett 499:232–242. https://doi.org/10.1016/j.canlet.2020.11.027

Article  CAS  PubMed  Google Scholar 

Kari V, Shchebet A, Neumann H, Johnsen SA (2011) The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle 10(20):3495–3504. https://doi.org/10.4161/cc.10.20.17769

Article  CAS  PubMed  Google Scholar 

Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells. vitro Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339

Article  CAS  PubMed  Google Scholar 

Sestili P, Calcabrini C, Diaz AR, Fimognari C, Stocchi V (2017) The fast-halo assay for the detection of DNA damage. In: Walker J (ed) Methods in Molecular Biology, Springer Nature, 1644:75–93. https://doi.org/10.1007/978-1-4939-7187-9_6

Maurya DK (2014) HaloJ: an ImageJ program for semiautomatic quantification of DNA damage at single-cell level. Int J Toxicol 33(5):362–366. https://doi.org/10.1177/1091581814549961

Article  CAS  PubMed  Google Scholar 

Foster ER, Downs JA (2005) Histone H2A phosphorylation in DNA double-strand break repair. FEBS J 272(13):3231–3240. https://doi.org/10.1111/j.1742-4658.2005.04741.x

Article  CAS  PubMed  Google Scholar 

Ali MY, Oliva CR, Noman ASM, Allen BG, Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM, Griguer CE Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel) 12(9):2511.

Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A (2020) (2007) Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem 282(29):21206–21212. https://doi.org/10.1074/jbc.M703042200

Somers K, Kosciolek A, Bongers A, El-Ayoubi A, Karsa M, Mayoh C, Wadham C, Middlemiss S, Neznanov N, Kees UR, Lock RB, Gudkov A, Sutton R, Gurova K, Haber M, Norris MD, Henderson MJ (2020) Potent antileukemic activity of curaxin CBL0137 against MLL-rearranged leukemia. Int J Cancer 146(7):1902–1916. https://doi.org/10.1002/ijc.32582

Article  CAS  PubMed  Google Scholar 

Albahde MAH, Zhang P, Chen H, Wang W (2020) CBL0137 administration suppresses human hepatocellular carcinoma cells proliferation and induces apoptosis associated with multiple cell death related proteins. Neoplasma 67(3):547–556. https://doi.org/10.4149/neo_2020_190621N535

Article  PubMed  Google Scholar 

Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346. https://doi.org/10.1016/j.ccr.2013.08.001

Article  CAS  PubMed  Google Scholar 

Wang R, Peng S, Zhang X, Wu Z, Duan H, Yuan Y, Wang W (2019) Inhibition of NF-κB improves sensitivity to irradiation and EGFR-TKIs and decreases irradiation-induced lung toxicity. Int J Cancer 144(1):200–209. https://doi.org/10.1002/ijc.31907

Article  CAS  PubMed  Google Scholar 

Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 51(4):469–479.

Piquet S, Le Parc F, Bai SK, Chevallier O, Adam S, Polo SE (2013) (2018) The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage. Mol Cell 72(5):888–901. https://doi.org/10.1016/j.molcel.2018.09.010

Majd NK, Yap TA, Koul D, Balasubramaniyan V, Li X, Khan S, Gandy KS, Yung, WKA DeGroot JF (2021) The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neurooncol Adv 3(1):1–12. https://doi.org/10.1093/noajnl/vdab015

Article  Google Scholar 

Prendergast L, Hong E, Safina A, Poe D, Gurova K (2020) Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene 39(28):5124–5137. https://doi.org/10.1038/s41388-020-1346-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 25(10):578–585. https://doi.org/10.1016/j.clon.2013.06.007

Article  CAS  PubMed  Google Scholar 

Jeong I, Yu N, Jang I, Jun Y, Kim M-S, Choi J, Lee B, Lee S (2018) GEMiCCL: mining genotype and expression data of cancer cell lines with elaborate visualization. Database (Oxford) 2018(bay041). https://doi.org/10.1093/database/bay041

Bairoch A (2018) The Cellosaurus, a cell-line knowledge resource. J Biomol Tech 29(2):25–38. https://doi.org/10.7171/jbt.18-2902-002

Article  PubMed  PubMed Central  Google Scholar 

Qin T, Mullan B, Ravindran R, Messinger D, Siada R, Cummings JR, Harris M, Muruganand A, Pyaram K, Miklja Z, Reiber M, Garcia T, Tran D, Danussi C, Brosnan-Cashman J, Pratt D, Zhao X, Rehemtulla A, Sartor MA, Venneti S, Meeker AK, Huse JT, Morgan MA, Lowenstein PR, Castro MG, Yadav VN, Koschmann C (2022) ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Rep 38(2):1102–1116. https://doi.org/10.1016/j.celrep.2021.110216

Article  CAS  Google Scholar 

Aguilera P, López-Contreras AJ (2023) ATRX, a guardian of chromatin. Trends Genet 39(6):505–519. https://doi.org/10.1016/j.tig.2023.02.009

Article  CAS  PubMed  Google Scholar 

Koschmann C, Calinescu AA, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, Mendez F, Kamran N, Dzaman M, Mulpuri L, Krasinkiewicz J, Doherty R, Lemons R, Brosnan-Cashman JA, Li Y, Roh S, Zhao L, Appelman H, Ferguson D, Gorbunova V, Meeker A, Jones C, Lowenstein PR, Castro MG (2016) ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med 8(328):328ra28. https://doi.org/10.1126/scitranslmed.aac8228

Article  CAS  PubMed  PubMed Central  Google Scholar 

Purkait S, Miller CA, Kumar A, Sharma V, Pathak P, Jha P, Sharma MC, Suri V, Suri A, Sharma BS, Fulton RS, Kale SS, Dahiya S, Sarkar C (2017) ATRX in diffuse gliomas with its mosaic/heterogeneous expression in a subset. Brain Pathol 27:138–145. https://doi.org/10.1111/bpa.12364

Article  CAS  PubMed  Google Scholar 

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Din

留言 (0)

沒有登入
gif