Artificial intelligence-based quantification of pulmonary HRCT (AIqpHRCT) for the evaluation of interstitial lung disease in patients with inflammatory rheumatic diseases

Hoffmann T, Oelzner P, Busch M, Franz M, Teichgräber U, Kroegel C, Schulze PC, Wolf G, Pfeil A (2022) Organ Manifestation and Systematic Organ Screening at the Onset of Inflammatory Rheumatic Diseases. Diagnostics 12(1). https://doi.org/10.3390/diagnostics12010067

Hoffmann T, Oelzner P, Teichgräber U, Franz M, Gaßler N, Kroegel C, Wolf G, Pfeil A (2022) Diagnosing lung involvement in inflammatory rheumatic diseases-where do we currently stand? Front Med (Lausanne) 9:1101448. https://doi.org/10.3389/fmed.2022.1101448

Article  PubMed  Google Scholar 

Hoffmann T, Oelzner P, Franz M, Teichgräber U, Renz D, Förster M, Böttcher J, Kroegel C, Schulze PC, Wolf G, Pfeil A (2022) Assessing the diagnostic value of a potential screening tool for detecting early interstitial lung disease at the onset of inflammatory rheumatic diseases. Arthritis Res Ther 24(1):107. https://doi.org/10.1186/s13075-022-02786-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann-Vold A-M, Maher TM, Philpot EE, Ashrafzadeh A, Barake R, Barsotti S, Bruni C, Carducci P, Carreira PE, Castellví I, Del Galdo F, Distler JHW, Foeldvari I, Fraticelli P, George PM, Griffiths B, Guillén-Del-Castillo A, Hamid AM, Horváth R, Hughes M, Kreuter M, Moazedi-Fuerst F, Olas J, Paul S, Rotondo C, Rubio-Rivas M, Seferian A, Tomčík M, Uzunhan Y, Walker UA, Więsik-Szewczyk E, Distler O (2020) The identification and management of interstitial lung disease in systemic sclerosis: evidence-based European consensus statements. Lancet Rheumatol 2(2):e71–e83. https://doi.org/10.1016/S2665-9913(19)30144-4

Article  PubMed  Google Scholar 

Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, Goldin JG, Hansell DM, Inoue Y, Johkoh T, Nicholson AG, Knight SL, Raoof S, Richeldi L, Ryerson CJ, Ryu JH, Wells AU (2018) Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med 6(2):138–153. https://doi.org/10.1016/s2213-2600(17)30433-2

Article  PubMed  Google Scholar 

Travis WD, Costabel U, Hansell DM, King TE Jr., Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748. https://doi.org/10.1164/rccm.201308-1483ST

Article  PubMed  PubMed Central  Google Scholar 

American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias (2002) This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 165(2):277–304. https://doi.org/10.1164/ajrccm.165.2.ats01

Article  Google Scholar 

Soffer S, Morgenthau AS, Shimon O, Barash Y, Konen E, Glicksberg BS, Klang E (2022) Artificial Intelligence for Interstitial Lung Disease Analysis on chest computed tomography: a systematic review. Acad Radiol 29(Suppl 2):S226–s235. https://doi.org/10.1016/j.acra.2021.05.014

Article  PubMed  Google Scholar 

Raghu G, Montesi SB, Silver RM, Hossain TA-O, Macrea M, Herman D, Barnes HA-O, Adegunsoye A, Azuma A, Chung L, Gardner GC, Highland KB, Hudson M, Kaner RJ, Kolb MA-O, Scholand MB, Steen V, Thomson CC, Volkmann EA-O, Wigley FM, Burlile D, Kemper KA Knight SA-O, Ghazipura M treatment of systemic sclerosis-associated interstitial lung disease: evidence-based recommendations. An official American Thoracic Society Clinical Practice Guideline. LID – 10.1164/rccm.202306-1113ST [doi]. (1535–4970 (Electronic))

Aziz ZA, Wells AU, Hansell DM, Bain GA, Copley SJ, Desai SR, Ellis SM, Gleeson FV, Grubnic S, Nicholson AG, Padley SP, Pointon KS, Reynolds JH, Robertson RJ, Rubens MB (2004) HRCT diagnosis of diffuse parenchymal lung disease: inter-observer variation. Thorax 59(6):506–511. https://doi.org/10.1136/thx.2003.020396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsh SL, Calandriello L, Sverzellati N, Wells AU, Hansell DM (2016) Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT. Thorax 71(1):45–51. https://doi.org/10.1136/thoraxjnl-2015-207252

Article  PubMed  Google Scholar 

Widell J, Lidén M (2020) Interobserver variability in high-resolution CT of the lungs. Eur J Radiol Open 7:100228. https://doi.org/10.1016/j.ejro.2020.100228

Article  PubMed  PubMed Central  Google Scholar 

Volkmann ER, Tashkin DP, Roth MD, Goldin J, Kim GHJ Early Radiographic Progression of Scleroderma: Lung Disease predicts long-term mortality. (1931–3543 (Electronic))

Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA, Corte TJ, Glassberg M, Johannson KA, Calandriello L, Felder F, Wells A, Walsh S (2023) Machine learning in radiology: the new frontier in interstitial lung diseases. Lancet Digit Health 5(1):e41–e50. https://doi.org/10.1016/s2589-7500(22)00230-8

Article  CAS  PubMed  Google Scholar 

Lessmann N, Sánchez CI, Beenen L, Boulogne LH, Brink M, Calli E, Charbonnier JP, Dofferhoff T, van Everdingen WM, Gerke PK, Geurts B, Gietema HA, Groeneveld M, van Harten L, Hendrix N, Hendrix W, Huisman HJ, Išgum I, Jacobs C, Kluge R, Kok M, Krdzalic J, Lassen-Schmidt B, van Leeuwen K, Meakin J, Overkamp M, van Rees Vellinga T, van Rikxoort EM, Samperna R, Schaefer-Prokop C, Schalekamp S, Scholten ET, Sital C, Stöger JL, Teuwen J, Venkadesh KV, de Vente C, Vermaat M, Xie W, de Wilde B, Prokop M, van Ginneken B (2021) Automated Assessment of COVID-19 reporting and data system and Chest CT Severity Scores in patients suspected of having COVID-19 using Artificial Intelligence. Radiology 298(1):E18–e28. https://doi.org/10.1148/radiol.2020202439

Article  PubMed  Google Scholar 

Song L, Leppig JA, Hubner RH, Lassen-Schmidt BC, Neumann K, Theilig DC, Feldhaus FW, Fahlenkamp UL, Hamm B, Song W, Jin Z, Doellinger F (2020) Quantitative CT Analysis in patients with Pulmonary Emphysema: do calculated differences between full inspiration and expiration correlate with lung function? Int J Chron Obstruct Pulmon Dis 15:1877–1886. https://doi.org/10.2147/copd.S253602

Article  CAS  PubMed  PubMed Central  Google Scholar 

Network R (2023) RACOON Network. https://racoon.network. Accessed 29.06.2023, 2023

Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR, Miller A, Brunner HI, Ogawa R, Felson D, Ogdie A, Aletaha D, Feldman BM (2015) Distinctions between diagnostic and classification criteria? Arthritis Care Res (Hoboken) 67(7):891–897. https://doi.org/10.1002/acr.22583

Article  PubMed  Google Scholar 

Goldin JG, Lynch DA, Strollo DC, Suh RD, Schraufnagel DE, Clements PJ, Elashoff RM, Furst DE, Vasunilashorn S, McNitt-Gray MF, Brown MS, Roth MD, Tashkin DP (2008) High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. Chest 134(2):358–367. https://doi.org/10.1378/chest.07-2444

Article  PubMed  Google Scholar 

Capobianco J, Grimberg A, Thompson BM, Antunes VB, Jasinowodolinski D, Meirelles GS (2012) Thoracic manifestations of collagen vascular diseases. Radiographics 32(1):33–50. https://doi.org/10.1148/rg.321105058

Article  PubMed  Google Scholar 

Kadura S, Raghu G (2021) Antineutrophil cytoplasmic antibody-associated interstitial lung disease: a review. Eur Respir Rev 30(162). https://doi.org/10.1183/16000617.0123-2021

Comarmond C, Pagnoux C, Khellaf M, Cordier JF, Hamidou M, Viallard JF, Maurier F, Jouneau S, Bienvenu B, Puéchal X, Aumaître O, Le Guenno G, Le Quellec A, Cevallos R, Fain O, Godeau B, Seror R, Dunogué B, Mahr A, Guilpain P, Cohen P, Aouba A, Mouthon L, Guillevin L (2013) Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): clinical characteristics and long-term followup of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum 65(1):270–281. https://doi.org/10.1002/art.37721

Article  PubMed  Google Scholar 

Smiyan S, Bernstein Z, Izhik A, Sokolov V, Dyadyk O, Gusak S, Rozumnyi O, Symko H, Komorovsky R (2022) Pulmonary pattern in systemic vasculitis: granulomatosis, lung cancer or both? Reumatologia 60(6):437–443. https://doi.org/10.5114/reum.2022.123673

Article  PubMed  PubMed Central  Google Scholar 

Lassen-Schmidt B, Hering A, Krass S, Meine H (2020) Automatic segmentation of the pulmonary lobes with a 3D u-net and optimized loss function

Klein J, Wenzel M, Romberg D, Köhn A, Kohlmann P, Link F, Hänsch A, Dicken V, Stein R, Haase J, Schreiber A, Kasan R, Hahn H, Meine H (2020) QuantMed: Component-based deep learning platform for translational research. SPIE

Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey

Google Scholar 

Handa T, Tanizawa K, Oguma T, Uozumi R, Watanabe K, Tanabe N, Niwamoto T, Shima H, Mori R, Nobashi TW, Sakamoto R, Kubo T, Kurosaki A, Kishi K, Nakamoto Y, Hirai T (2022) Novel Artificial Intelligence-based technology for chest computed Tomography Analysis of Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 19(3):399–406. https://doi.org/10.1513/AnnalsATS.202101-044OC

Article  PubMed  Google Scholar 

Wu X, Yin C, Chen X, Zhang Y, Su Y, Shi J, Weng D, Jiang X, Zhang A, Zhang W, Li H (2022) Idiopathic pulmonary fibrosis mortality risk prediction based on Artificial Intelligence: the CTPF Model. Front Pharmacol 13:878764. https://doi.org/10.3389/fphar.2022.878764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koo TK, Li MY (2016) A Guideline of selecting and reporting Intraclass correlation coefficients for Reliability Research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Article  PubMed  PubMed Central  Google Scholar 

Lassen-Schmidt BC, Kuhnigk JM, Konrad O, van Ginneken B, van Rikxoort EM (2017) Fast interactive segmentation of the pulmonary lobes from thoracic computed tomography data. Phys Med Biol 62(16):6649–6665. https://doi.org/10.1088/1361-6560/aa7674

Article  CAS  PubMed  Google Scholar 

Lassen B, van Rikxoort EM, Schmidt M, Kerkstra S, van Ginneken B, Kuhnigk JM (2013) Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. IEEE Trans Med Imaging 32(2):210–222. https://doi.org/10.1109/tmi.2012.2219881

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif