Glatiramer acetate in situ forming gel, a new approach for multiple sclerosis treatment

Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019;28(12):1051–7. https://doi.org/10.1080/13543784.2019.1676725.

Article  CAS  PubMed  Google Scholar 

Kuerten S, Jackson LJ, Kaye J, Vollmer TL. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs. 2018;32(11):1039–51. https://doi.org/10.1007/s40263-018-0567-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, et al. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res. 2015;63(1):58–69. https://doi.org/10.1007/s12026-015-8719-0.

Article  CAS  PubMed  Google Scholar 

Wingerchuk DM, Carter JL, editors. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clinic Proceedings; 2014: Elsevier. https://doi.org/10.1016/j.mayocp.2013.11.002.

Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M. Multiple sclerosis: Therapeutic applications of advancing drug delivery systems. Biomed Pharmacother. 2017;86:343–53. https://doi.org/10.1016/j.biopha.2016.12.010.

Article  CAS  PubMed  Google Scholar 

Wynn DR. Enduring clinical value of copaxone®(Glatiramer Acetate) in multiple sclerosis after 20 years of use. Mult Scler Int. 2019;2019(1):7151685. https://doi.org/10.1155/2019/7151685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev. 2007;6(7):469–75. https://doi.org/10.1016/j.autrev.2007.02.003.

Article  CAS  PubMed  Google Scholar 

Molavi F, Barzegar-Jalali M, Hamishehkar H. Changing the daily injection of glatiramer acetate to a monthly long acting product through designing polyester-based polymeric microspheres. BioImpacts: BI. 2022;12(6):501. https://doi.org/10.34172/bi.2022.23733.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadidi N, Pazuki G. Preparation, characterization and in-vivo efficacy study of glatiramer acetate (GA)-hydrogel-microparticles as novel drug delivery system for GA in RRMS. Sci Rep. 2022;12(1):22042. https://doi.org/10.1038/s41598-022-26640-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter NJ, Keating GM. Glatiramer acetate. Drugs. 2010;70(12):1545–77. https://doi.org/10.2165/11204560-000000000-00000.

Article  CAS  PubMed  Google Scholar 

Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. Recent progress in drug delivery. Acta Pharmaceutica Sinica B. 2019;9(6):1145–62. https://doi.org/10.1016/j.apsb.2019.08.003.

Article  PubMed  PubMed Central  Google Scholar 

Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):859. https://doi.org/10.3390/pharmaceutics12090859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madan M, Bajaj A, Lewis S, Udupa N, Baig J. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 2009;71(3):242. https://doi.org/10.4103/0250-474X.56015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohanty D, Bakshi V, Simharaju N, Haque MA, Sahoo CK. A review on in situ gel: a novel drug delivery system. Int J Pharm Sci Rev Res. 2018;50(1):175–81.

CAS  Google Scholar 

Chavan P, Vyas S. A novel approach in-situ gel for sustained drug delivery: a Review. Int J Pharmceutics. 2017;9(4):260–80.

CAS  Google Scholar 

Neha K, Nirmala HS. Insitu gelling system: A Review. J Drug Del Ther. 2014;4(4):93–103.

CAS  Google Scholar 

Kumbhar AB, Rakde AK, Chaudhari P. In situ gel forming injectable drug delivery system. Int J Pharm Sci Res. 2013;4(2):597.

CAS  Google Scholar 

Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26. https://doi.org/10.4103/0250-474X.56015.

Article  CAS  PubMed  Google Scholar 

Sarada K, Firoz S, Padmini K. In-situ gelling system: A review. Int J Curr Pharma Rev Res. 2014;15(5):76–90.

Google Scholar 

Jones DS, Bruschi ML, de Freitas O, Gremião MPD, Lara EHG, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm. 2009;372(1–2):49–58. https://doi.org/10.1016/j.ijpharm.2009.01.006.

Article  CAS  PubMed  Google Scholar 

Hsieh H-Y, Lin W-Y, Lee AL, Li Y-C, Chen YJ, Chen K-C, et al. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. PLoS ONE. 2020;15(3):e0227784. https://doi.org/10.1371/journal.pone.0227784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sosnik A, Seremeta KP. Polymeric hydrogels as technology platform for drug delivery applications. Gels. 2017;3(3):25. https://doi.org/10.3390/gels3030025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–65. https://doi.org/10.1016/j.jconrel.2020.07.044.

Article  CAS  PubMed  Google Scholar 

Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm. 2011;409(1–2):19–29. https://doi.org/10.1016/j.ijpharm.2011.02.017.

Article  CAS  PubMed  Google Scholar 

Kojarunchitt T, Baldursdottir S, Dong Y-D, Boyd BJ, Rades T, Hook S. Modified thermoresponsive Poloxamer 407 and chitosan sol–gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm. 2015;89:74–81. https://doi.org/10.1016/j.ejpb.2014.11.026.

Article  CAS  PubMed  Google Scholar 

Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186–93. https://doi.org/10.1016/j.ejpb.2010.02.01.

Article  CAS  PubMed  Google Scholar 

Lu K-Y, Lin Y-C, Lu H-T, Ho Y-C, Weng S-C, Tsai M-L, et al. A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym. 2019;206:664–73. https://doi.org/10.1016/j.carbpol.2018.11.050.

Article  CAS  PubMed  Google Scholar 

Hsu S-H, Leu Y-L, Hu J-W, Fang J-Y. Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft. Chem Pharm Bull. 2009;57(5):453–8. https://doi.org/10.1248/cpb.57.453.

Article  CAS  Google Scholar 

Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150–63. https://doi.org/10.1016/j.jconrel.2020.06.012.

Article  CAS  PubMed  Google Scholar 

Fu J, Yang F, Guo Z. The chitosan hydrogels: From structure to function. New J Chem. 2018;42(21):17162–80. https://doi.org/10.1039/C8NJ03482F.

留言 (0)

沒有登入
gif