Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019;28(12):1051–7. https://doi.org/10.1080/13543784.2019.1676725.
Article CAS PubMed Google Scholar
Kuerten S, Jackson LJ, Kaye J, Vollmer TL. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs. 2018;32(11):1039–51. https://doi.org/10.1007/s40263-018-0567-8.
Article CAS PubMed PubMed Central Google Scholar
Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, et al. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res. 2015;63(1):58–69. https://doi.org/10.1007/s12026-015-8719-0.
Article CAS PubMed Google Scholar
Wingerchuk DM, Carter JL, editors. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clinic Proceedings; 2014: Elsevier. https://doi.org/10.1016/j.mayocp.2013.11.002.
Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M. Multiple sclerosis: Therapeutic applications of advancing drug delivery systems. Biomed Pharmacother. 2017;86:343–53. https://doi.org/10.1016/j.biopha.2016.12.010.
Article CAS PubMed Google Scholar
Wynn DR. Enduring clinical value of copaxone®(Glatiramer Acetate) in multiple sclerosis after 20 years of use. Mult Scler Int. 2019;2019(1):7151685. https://doi.org/10.1155/2019/7151685.
Article CAS PubMed PubMed Central Google Scholar
Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev. 2007;6(7):469–75. https://doi.org/10.1016/j.autrev.2007.02.003.
Article CAS PubMed Google Scholar
Molavi F, Barzegar-Jalali M, Hamishehkar H. Changing the daily injection of glatiramer acetate to a monthly long acting product through designing polyester-based polymeric microspheres. BioImpacts: BI. 2022;12(6):501. https://doi.org/10.34172/bi.2022.23733.
Article CAS PubMed PubMed Central Google Scholar
Hadidi N, Pazuki G. Preparation, characterization and in-vivo efficacy study of glatiramer acetate (GA)-hydrogel-microparticles as novel drug delivery system for GA in RRMS. Sci Rep. 2022;12(1):22042. https://doi.org/10.1038/s41598-022-26640-x.
Article CAS PubMed PubMed Central Google Scholar
Carter NJ, Keating GM. Glatiramer acetate. Drugs. 2010;70(12):1545–77. https://doi.org/10.2165/11204560-000000000-00000.
Article CAS PubMed Google Scholar
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. Recent progress in drug delivery. Acta Pharmaceutica Sinica B. 2019;9(6):1145–62. https://doi.org/10.1016/j.apsb.2019.08.003.
Article PubMed PubMed Central Google Scholar
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12(9):859. https://doi.org/10.3390/pharmaceutics12090859.
Article CAS PubMed PubMed Central Google Scholar
Madan M, Bajaj A, Lewis S, Udupa N, Baig J. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 2009;71(3):242. https://doi.org/10.4103/0250-474X.56015.
Article CAS PubMed PubMed Central Google Scholar
Mohanty D, Bakshi V, Simharaju N, Haque MA, Sahoo CK. A review on in situ gel: a novel drug delivery system. Int J Pharm Sci Rev Res. 2018;50(1):175–81.
Chavan P, Vyas S. A novel approach in-situ gel for sustained drug delivery: a Review. Int J Pharmceutics. 2017;9(4):260–80.
Neha K, Nirmala HS. Insitu gelling system: A Review. J Drug Del Ther. 2014;4(4):93–103.
Kumbhar AB, Rakde AK, Chaudhari P. In situ gel forming injectable drug delivery system. Int J Pharm Sci Res. 2013;4(2):597.
Ruel-Gariepy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26. https://doi.org/10.4103/0250-474X.56015.
Article CAS PubMed Google Scholar
Sarada K, Firoz S, Padmini K. In-situ gelling system: A review. Int J Curr Pharma Rev Res. 2014;15(5):76–90.
Jones DS, Bruschi ML, de Freitas O, Gremião MPD, Lara EHG, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm. 2009;372(1–2):49–58. https://doi.org/10.1016/j.ijpharm.2009.01.006.
Article CAS PubMed Google Scholar
Hsieh H-Y, Lin W-Y, Lee AL, Li Y-C, Chen YJ, Chen K-C, et al. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery. PLoS ONE. 2020;15(3):e0227784. https://doi.org/10.1371/journal.pone.0227784.
Article CAS PubMed PubMed Central Google Scholar
Sosnik A, Seremeta KP. Polymeric hydrogels as technology platform for drug delivery applications. Gels. 2017;3(3):25. https://doi.org/10.3390/gels3030025.
Article CAS PubMed PubMed Central Google Scholar
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–65. https://doi.org/10.1016/j.jconrel.2020.07.044.
Article CAS PubMed Google Scholar
Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm. 2011;409(1–2):19–29. https://doi.org/10.1016/j.ijpharm.2011.02.017.
Article CAS PubMed Google Scholar
Kojarunchitt T, Baldursdottir S, Dong Y-D, Boyd BJ, Rades T, Hook S. Modified thermoresponsive Poloxamer 407 and chitosan sol–gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm. 2015;89:74–81. https://doi.org/10.1016/j.ejpb.2014.11.026.
Article CAS PubMed Google Scholar
Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186–93. https://doi.org/10.1016/j.ejpb.2010.02.01.
Article CAS PubMed Google Scholar
Lu K-Y, Lin Y-C, Lu H-T, Ho Y-C, Weng S-C, Tsai M-L, et al. A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym. 2019;206:664–73. https://doi.org/10.1016/j.carbpol.2018.11.050.
Article CAS PubMed Google Scholar
Hsu S-H, Leu Y-L, Hu J-W, Fang J-Y. Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft. Chem Pharm Bull. 2009;57(5):453–8. https://doi.org/10.1248/cpb.57.453.
Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150–63. https://doi.org/10.1016/j.jconrel.2020.06.012.
Article CAS PubMed Google Scholar
Fu J, Yang F, Guo Z. The chitosan hydrogels: From structure to function. New J Chem. 2018;42(21):17162–80. https://doi.org/10.1039/C8NJ03482F.
留言 (0)