Ultrasound Imaging of Macrophages Intracellularly Labelled with Biosynthetic Gas Vesicles

Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242. https://doi.org/10.1038/nri.2017.125

Article  CAS  PubMed  Google Scholar 

Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavin Y, Mortha A, Rahman A et al (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15(12):731–744. https://doi.org/10.1038/nri3920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapouri-Moghaddam A, Mohammadian S, Vazini H et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

Article  CAS  PubMed  Google Scholar 

Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

Article  CAS  PubMed  Google Scholar 

Ning X, Bao H, Liu X et al (2019) Long-term in vivo CT tracking of mesenchymal stem cells labeled with Au@BSA@PLL nanotracers. Nanoscale 11(43):20932–20941. https://doi.org/10.1039/c9nr05637h

Article  CAS  PubMed  Google Scholar 

Glover JC, Aswendt M, Boulland JL et al (2020) In vivo cell tracking using non-invasive imaging of Iron Oxide-based particles with Particular Relevance for Stem Cell-based treatments of neurological and Cardiac Disease. Mol Imaging Biol 22(6):1469–1488. https://doi.org/10.1007/s11307-019-01440-4

Article  PubMed  Google Scholar 

Thu MS, Bryant LH, Coppola T et al (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18(3):463–467. https://doi.org/10.1038/nm.2666

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khurana A, Chapelin F, Beck, G et al (2013). Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 269(1):186–197. https://doi.org/10.1148/radiol.13130858

Duan X, Wang Y, Zhang F et al (2016) Superparamagnetic Iron Oxide-Loaded Cationic Polymersomes for Cellular MR Imaging of therapeutic stem cells in stroke. J Biomed Nanotechnol 12(12):2112–2124. https://doi.org/10.1166/jbn.2016.2321

Article  CAS  PubMed  Google Scholar 

Wang G, Fu Y, Shea SM et al (2019) Quantitative CT and 19F-MRI tracking of perfluorinated encapsulated mesenchymal stem cells to assess graft immunorejection. MAGMA 32(1):147–156. https://doi.org/10.1007/s10334-018-0728-2

Article  CAS  PubMed  Google Scholar 

Versluis M, Stride E, Lajoinie G et al (2020) Ultrasound contrast Agent modeling: a review. Ultrasound Med Biol 46(9):2117–2144. https://doi.org/10.1016/j.ultrasmedbio.2020.04.014

Article  PubMed  Google Scholar 

Li Z, Lai M, Zhao S et al (2022) Ultrasound Molecular Imaging for multiple biomarkers by serial collapse of targeting microbubbles with distinct acoustic pressures. Small 18(22):e2108040. https://doi.org/10.1002/smll.202108040

Article  CAS  PubMed  Google Scholar 

Bar-Zion A, Nourmahnad A, Mittelstein DR et al (2021) Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat Nanotechnol 16(12):1403–1412. https://doi.org/10.1038/s41565-021-00971-8

Article  CAS  PubMed  Google Scholar 

Long H, Qin X, Xu R et al (2021) Non-modified ultrasound-responsive gas vesicles from Microcystis with targeted Tumor Accumulation. Int J Nanomed 16:8405–8416. https://doi.org/10.2147/IJN.S342614

Article  CAS  Google Scholar 

Zeng F, Du M, Chen Z (2021) Nanosized contrast agents in Ultrasound Molecular Imaging. Front Bioeng Biotechnol 9:758084. https://doi.org/10.3389/fbioe.2021.758084

Article  PubMed  PubMed Central  Google Scholar 

Paefgen V, Doleschel D, Kiessling F (2015) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197. https://doi.org/10.3389/fphar.2015.00197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endo-Takahashi Y, Negishi Y (2020) Microbubbles and Nanobubbles with Ultrasound for systemic gene delivery. Pharmaceutics 12(10):964. https://doi.org/10.3390/pharmaceutics12100964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Unnikrishnan S, Klibanov AL (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am J Roentgenol 199(2):292–299. https://doi.org/10.2214/AJR.12.8826

Article  PubMed  Google Scholar 

Köse G, Darguzyte M, Kiessling F (2020) Molecular Ultrasound Imaging. Nanomaterials (Basel) 10(10):1935. https://doi.org/10.3390/nano10101935

Article  CAS  PubMed  Google Scholar 

Mulvana H, Browning RJ, Luan Y, de Jong N, Tang MX, Eckersley RJ, Stride E (2017) Characterization of contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Trans Ultrason Ferroelectr Freq Control 64(1):232–251. https://doi.org/10.1109/TUFFC.2016.2613991

Article  PubMed  Google Scholar 

Kim M, Lee JH, Kim SE et al (2016) Nanosized Ultrasound enhanced-contrast Agent for in vivo Tumor Imaging via Intravenous Injection. ACS Appl Mater Interfaces 8(13):8409–8418. https://doi.org/10.1021/acsami.6b02115

Article  CAS  PubMed  Google Scholar 

Lakshmanan A, Lu GJ, Farhadi A et al (2017) Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat Protoc 12(10):2050–2080. https://doi.org/10.1038/nprot.2017.081

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling B, Lee J, Maresca D et al (2020) Biomolecular Ultrasound imaging of phagolysosomal function. ACS Nano 14(9):12210–12221. https://doi.org/10.1021/acsnano.0c05912

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tayier B, Deng Z, Wang Y et al (2019) Biosynthetic nanobubbles for targeted gene delivery by focused ultrasound. Nanoscale 11(31):14757–14768. https://doi.org/10.1039/c9nr03402a

Article  CAS  PubMed  Google Scholar 

Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9(4):311–316. https://doi.org/10.1038/nnano.2014.32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang G, Song L, Hou X et al (2020) Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials 236:119803. https://doi.org/10.1016/j.biomaterials.2020.119803

Article  CAS  PubMed  Google Scholar 

Wei M, Lai M, Zhang J et al (2022) Biosynthetic Gas Vesicles from Halobacteria NRC-1: a potential ultrasound contrast Agent for Tumor Imaging. Pharmaceutics 14(6):1198. https://doi.org/10.3390/pharmaceutics14061198

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif