The role of fatigue in attentional processing in multiple sclerosis: data from event-related potentials

Almeida J, Pinto N, Maricoto T, Vaz M (2024) Relationship between event-related potentials and cognitive dysfunction in multiple sclerosis: a systematic review. Clin Neurophysiol 163:174–184. https://doi.org/10.1016/J.CLINPH.2024.04.024

Article  Google Scholar 

Amato N, Cursi M, Rodegher M et al (2016) Stroop event-related potentials as a bioelectrical correlate of frontal lobe dysfunction in multiple sclerosis. Mult Scler Demyelinating Disord 1:8. https://doi.org/10.1186/s40893-016-0007-x

Article  Google Scholar 

Arm J, Ribbons K, Lechner-Scott J, Ramadan S (2019) Evaluation of MS related central fatigue using MR neuroimaging methods: scoping review. J Neurol Sci 400:52–71

Article  PubMed  Google Scholar 

Artemiadis AK, Anagnostouli MC, Zalonis IG et al (2018) Structural MRI correlates of cognitive event-related potentials in multiple sclerosis. J Clin Neurophysiol 35:399–407. https://doi.org/10.1097/WNP.0000000000000473

Article  PubMed  Google Scholar 

Ayache SS, Serratrice N, Abi Lahoud GN, Chalah MA (2022) Fatigue in multiple sclerosis: a review of the exploratory and therapeutic potential of non-invasive brain stimulation. Front Neurol 13:813965. https://doi.org/10.3389/fneur.2022.813965

Article  PubMed  PubMed Central  Google Scholar 

Beck AT (1961) An inventory for Measuring Depression. Arch Gen Psychiatry 4:561. https://doi.org/10.1001/archpsyc.1961.01710120031004

Article  CAS  PubMed  Google Scholar 

Bertoli M, Tecchio F (2020) Fatigue in multiple sclerosis: does the functional or structural damage prevail? Multiple Scler J 26:1809–1815. https://doi.org/10.1177/1352458520912175

Article  Google Scholar 

Boksem MAS, Tops M (2008) Mental fatigue: costs and benefits. Brain Res Rev 59:125–139. https://doi.org/10.1016/j.brainresrev.2008.07.001

Article  PubMed  Google Scholar 

Bonnet MC, Allard M, Dilharreguy B et al (2010) Cognitive compensation failure in multiple sclerosis. Neurology 75(14):1241–1248

Article  CAS  PubMed  Google Scholar 

Chaudhuri A, Behan PO (2000) Fatigue and basal ganglia. J Neurol Sci 179:34–42. https://doi.org/10.1016/S0022-510X(00)00411-1

Article  CAS  PubMed  Google Scholar 

Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151. https://doi.org/10.1016/S1474-4422(08)70259-X

Article  PubMed  Google Scholar 

Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. https://doi.org/10.1038/nrn755

Article  CAS  PubMed  Google Scholar 

Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55:343–361. https://doi.org/10.1016/S0301-0082(98)00011-2

Article  CAS  PubMed  Google Scholar 

Covey TJ, Shucard JL, Shucard DW (2017) Event-related brain potential indices of cognitive function and brain resource reallocation during working memory in patients with multiple sclerosis. Clin Neurophysiol 128:604–621. https://doi.org/10.1016/j.clinph.2016.12.030

Article  PubMed  Google Scholar 

DeLuca J, Genova HM, Hillary FG, Wylie G (2008) Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci 270:28–39. https://doi.org/10.1016/j.jns.2008.01.018

Article  PubMed  Google Scholar 

DeLuca J, Genova HM, Capili EJ, Wylie GR (2009) Functional neuroimaging of fatigue. Phys Med Rehabil Clin N Am 20:325–337

Article  PubMed  Google Scholar 

Duncan CC, Barry RJ, Connolly JF et al (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908. https://doi.org/10.1016/j.clinph.2009.07.045

Article  PubMed  Google Scholar 

Ellger T, Bethke F, Frese A et al (2002) Event-related potentials in different subtypes of multiple sclerosis—a cross-sectional study. J Neurol Sci 205:35–40. https://doi.org/10.1016/S0022-510X(02)00278-2

Article  PubMed  Google Scholar 

Fabiani M, Friedman D, Cheng JC (1998) Individual differences in P3 scalp distribution in older adults, and their relationship to frontal lobe function. Psychophysiology 35:698–708. https://doi.org/10.1111/1469-8986.3560698

Article  CAS  PubMed  Google Scholar 

Ferreira JA, Pinto N, Maricoto T, Pato MV (2024) Relationship between event-related potentials and cognitive dysfunction in multiple sclerosis: a systematic review. Clin Neurophysiol 163:174–184. https://doi.org/10.1016/j.clinph.2024.04.024

Article  PubMed  Google Scholar 

Fiene M, Rufener KS, Kuehne M et al (2018) Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. J Neurol 265:607–617. https://doi.org/10.1007/S00415-018-8754-6/FIGURES/3

Article  PubMed  Google Scholar 

Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25:355–373. https://doi.org/10.1016/S0149-7634(01)00019-7

Article  CAS  PubMed  Google Scholar 

Friedman D, Nessler D, Kulik J, Hamberger M (2011) The brain’s orienting response (novelty P3) in patients with unilateral temporal lobe resections. Neuropsychologia 49:3474–3483. https://doi.org/10.1016/j.neuropsychologia.2011.08.023

Article  PubMed  PubMed Central  Google Scholar 

Gedizlioglu M, Koskderelioglu A, Vural M, Tiftikcioglu IB (2022) Cognition in acute relapses: a psychometric evaluation and its correlation with event-related potential, P300 in multiple sclerosis. Appl Neuropsychol Adult 29:1552–1561. https://doi.org/10.1080/23279095.2021.1897815

Article  PubMed  Google Scholar 

Huiskamp M, Eijlers AJC, Broeders TAA et al (2021) Longitudinal Network Changes and Conversion to Cognitive Impairment in multiple sclerosis. Neurology 97:E794–E802. https://doi.org/10.1212/WNL.0000000000012341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiehl KA, Laurens KR, Duty TL et al (2001) Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology 38:133–142

CAS  PubMed  Google Scholar 

Kiiski H, Whelan R, Lonergan R et al (2011) Preliminary evidence for correlation between PASAT performance and P3a and P3b amplitudes in progressive multiple sclerosis. Eur J Neurol 18:792–795. https://doi.org/10.1111/j.1468-1331.2010.03172.x

Article  CAS  PubMed  Google Scholar 

Kim H (2014) Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis. Hum Brain Mapp 35:2265–2284. https://doi.org/10.1002/hbm.22326

Article  PubMed  Google Scholar 

Kimble M, Kaloupek D, Kaufman M, Deldin P (2000) Stimulus novelty differentially affects attentional allocation in PTSD. Biol Psychiatry 47:880–890. https://doi.org/10.1016/S0006-3223(99)00258-9

Article  CAS  PubMed  Google Scholar 

Kimiskidis VK, Papaliagkas V, Sotirakoglou K et al (2016) Cognitive event-related potentials in multiple sclerosis: correlation with MRI and neuropsychological findings. Mult Scler Relat Disord 10:192–197. https://doi.org/10.1016/J.MSARD.2016.10.006

Article 

留言 (0)

沒有登入
gif