Nitric oxide in the mechanisms of inhibitory effects of sodium butyrate on colon contractions in a mouse model of irritable bowel syndrome

Beck K, Voussen B, Reigl A et al (2019) Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil 31:e13589. https://doi.org/10.1111/nmo.13589

Article  CAS  PubMed  Google Scholar 

Bódi N, Szalai Z, Bagyánszki M (2019) Nitrergic enteric neurons in health and disease-focus on animal models. Int J Mol Sci 20:2003. https://doi.org/10.3390/ijms20082003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bult H, Boeckxstaens GE, Pelckmans PA et al (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nat 345:346–347. https://doi.org/10.1038/345346a0

Article  CAS  Google Scholar 

Caetano MAF, Magalhães HIR, Duarte JRL et al (2023) Butyrate protects myenteric neurons loss in mice following experimental ulcerative colitis. Cells 12:1672. https://doi.org/10.3390/cells12131672

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62:95–99. https://doi.org/10.1079/pns2002213

Article  CAS  PubMed  Google Scholar 

Cherbut C, Ferrier L, Rozé C et al (1998) Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol Gastrointest Liver Physiol 275(6):G1415-22. https://doi.org/10.1152/ajpgi.1998.275.6.g1415

Article  CAS  Google Scholar 

Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742. https://doi.org/10.1038/nrmicro2876

Article  CAS  PubMed  Google Scholar 

Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. https://doi.org/10.1038/nrn3346

Article  CAS  PubMed  Google Scholar 

Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459. https://doi.org/10.1111/j.1365-2672.1991.tb02739.x

Article  CAS  PubMed  Google Scholar 

Cummings JH, Pomare EW, Branch HWJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227. https://doi.org/10.1136/gut.28.10.1221

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS (2020) Nitric oxide and endothelial dysfunction. Crit Care Clin 36:307–321. https://doi.org/10.1016/j.ccc.2019.12.009

Article  PubMed  PubMed Central  Google Scholar 

Dass NB, John AK, Bassil AK et al (2007) The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol Motil 19:66–74. https://doi.org/10.1111/j.1365-2982.2006.00853.x

Article  CAS  PubMed  Google Scholar 

Dias MTS, Aguilar EC, Campos GP et al (2023) Butyrate inhibits LPC-induced endothelial dysfunction by regulating nNOS-produced NO and ROS production. Nitric Oxide - Biol Chem 138–139:42–50. https://doi.org/10.1016/j.niox.2023.05.006

Article  CAS  Google Scholar 

Distrutti E, Monaldi L, Ricci P, Fiorucci S (2016) Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol 22:2219–2241. https://doi.org/10.3748/wjg.v22.i7.2219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drossman DA, Camilleri M, Mayer EA, Whitehead WE (2002) AGA technical review on irritable bowel syndrome. Gastroenterology 123:2108–2131. https://doi.org/10.1053/gast.2002.37095

Article  PubMed  Google Scholar 

Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R (2016) The role of visceral hypersensitivity in irritable bowel syndrome: pharmacological targets and novel treatments. J Neurogastroenterol Motil 22:558–574. https://doi.org/10.5056/jnm16001

Forbes S, Stafford S, Coope G et al (2015) Selective FFA2 agonism appears to act via intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 64:3763–3771. https://doi.org/10.2337/db15-0481

Article  CAS  PubMed  Google Scholar 

Ford AC, Lacy BE, Harris LA et al (2019) Effect of antidepressants and psychological therapies in irritable bowel syndrome: an updated systematic review and meta-analysis. Am J Gastroenterol 114:21–39. https://doi.org/10.1038/s41395-018-0222-5

Article  PubMed  Google Scholar 

Fukumoto S, Tatewaki M, Yamada T et al (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284(5):R1269-76. https://doi.org/10.1152/ajpregu.00442.2002

Article  CAS  PubMed  Google Scholar 

Gargari G, Mantegazza G, Taverniti V et al (2023) Fecal short-chain fatty acids in non-constipated irritable bowel syndrome: a potential clinically relevant stratification factor based on catabotyping analysis. Gut Microbes 15(2):2274128. https://doi.org/10.1080/19490976.2023.2274128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grasa L, Rebollar E, Arruebo MP et al (2005) The role of NO in the contractility of rabbit small intestine in vitro: effect of K+ channels. J Physiol Pharmacol 56:407–419

CAS  PubMed  Google Scholar 

Grider JR, Piland BE (2007) The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol - Gastrointest Liver Physiol 292:429–437. https://doi.org/10.1152/ajpgi.00376.2006

Article  CAS  Google Scholar 

Haschke G, Schäfer H, Diener M (2002) Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+ concentration in cultured rat myenteric neurones. Neurogastroenterol Motil 14:133–142. https://doi.org/10.1046/j.1365-2982.2002.00312.x

Article  CAS  PubMed  Google Scholar 

Huang C, Hu Y, Sun S et al (2023) Effects of nnos inhibition on the escherichia coli and butyrate-producing bacteria in ibs rats with visceral hypersensitivity. Research Square. Preprint:1–18. https://doi.org/10.21203/rs.3.rs-2964008/v1

Kaji I, Akiba Y, Konno K et al (2016) Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon. J Physiol 594:3339–3352. https://doi.org/10.1113/JP271441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuiken SD, Klooker TK, Tytgat GN et al (2006) Possible role of nitric oxide in visceral hypersensitivity in patients with irritable bowel syndrome. Neurogastroenterol Motil 18:115–122. https://doi.org/10.1111/j.1365-2982.2005.00731.x

Article  CAS  PubMed  Google Scholar 

Lin M, Chen L, Xiao Y, Yu B (2019) Activation of cannabinoid 2 receptor relieves colonic hypermotility in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 31:e13555. https://doi.org/10.1111/nmo.13555

Article  CAS  PubMed  Google Scholar 

Liu L, Li Q, Yang Y, Guo A (2021) Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front Vet Sci 8:736739. https://doi.org/10.3389/fvets.2021.736739

Article  PubMed  PubMed Central  Google Scholar 

Lu Y, Huang J, Zhang Y et al (2021) Therapeutic effects of berberine hydrochloride on stress-induced diarrhea-predominant irritable bowel syndrome rats by inhibiting neurotransmission in colonic smooth muscle. Front Pharmacol 12:2498. https://doi.org/10.3389/fphar.2021.596686

Article  CAS  Google Scholar 

Martin-Gallausiaux C, Marinelli L, Blottière HM et al (2021) Conference on diet and digestive disease symposium 2: Sensing and signalling of the gut environment: Scfa: mechanisms and functional importance in the gut. Proc Nutr Soc 80:37–49. https://doi.org/10.1017/S0029665120006916

Article  CAS 

留言 (0)

沒有登入
gif