Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution

Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Rosas, N. C. & Lithgow, T. Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends Microbiol. 30, 544–552 (2022).

Article  CAS  PubMed  Google Scholar 

Storek, K. M., Sun, D. & Rutherford, S. T. Inhibitors targeting BamA in Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119609 (2024).

Article  CAS  PubMed  Google Scholar 

Sabnis, A. & Edwards, A. M. Lipopolysaccharide as an antibiotic target. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119507 (2023).

Article  CAS  PubMed  Google Scholar 

Overly Cottom, C., Stephenson, R., Wilson, L. & Noinaj, N. Targeting BAM for novel therapeutics against pathogenic Gram-negative bacteria. Antibiotics 12, 679 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romano, K. P. & Hung, D. T. Targeting LPS biosynthesis and transport in Gram-negative bacteria in the era of multi-drug resistance. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119407 (2023).

Article  CAS  PubMed  Google Scholar 

Sperandeo, P., Martorana, A. M., Zaccaria, M. & Polissi, A. Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119406 (2023).

Article  CAS  PubMed  Google Scholar 

Riu, F. et al. Antibiotics and carbohydrate-containing drugs targeting bacterial cell envelopes: an overview. Pharmaceuticals 15, 942 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oestreicher, Z., Taoka, A. & Fukumori, Y. A comparison of the surface nanostructure from two different types of Gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron 72, 8–14 (2015).

Article  PubMed  Google Scholar 

Pasquina-Lemonche, L. et al. The architecture of the Gram-positive bacterial cell wall. Nature 582, 294–297 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benn, G. et al. Phase separation in the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2112237118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lithgow, T., Stubenrauch, C. J. & Stumpf, M. P. H. Surveying membrane landscapes: a new look at the bacterial cell surface. Nat. Rev. Microbiol. 21, 502–518 (2023).

Article  CAS  PubMed  Google Scholar 

Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).

Article  CAS  PubMed  Google Scholar 

Tocheva, E. I., Ortega, D. R. & Jensen, G. J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 14, 535–542 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taib, N. et al. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4, 1661–1672 (2020).

Article  PubMed  Google Scholar 

Megrian, D., Taib, N., Jaffe, A. L., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat. Microbiol. 7, 2114–2127 (2022).

Article  CAS  PubMed  Google Scholar 

Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

Article  CAS  PubMed  Google Scholar 

Antunes, L. C. S. et al. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the firmicutes. eLife 5, e14589 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

Article  CAS  PubMed  Google Scholar 

Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

Article  CAS  PubMed  Google Scholar 

Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Battistuzzi, F. U. & Hedges, S. B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343 (2009).

Article  CAS  PubMed  Google Scholar 

Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

Article  CAS  PubMed  Google Scholar 

Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

Article  CAS  PubMed  Google Scholar 

Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).

Article 

留言 (0)

沒有登入
gif