miR-210 in ischaemic stroke: biomarker potential, challenges and future perspectives

Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genom. 2011. https://doi.org/10.1152/physiolgenomics.00158.2010.

Article  Google Scholar 

Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke. 2017. https://doi.org/10.5853/jos.2016.01368.

Article  PubMed  PubMed Central  Google Scholar 

He W, Chen S, Chen X, Li S, Chen W. Bioinformatics analysis of potential microRNAs in ischemic stroke. J Stroke Cerebrovasc Dis. 2016. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.03.023.

Article  PubMed  Google Scholar 

Xu W, Gao L, Zhang J. The roles of microRNAs in stroke: possible therapeutic targets. CNS Neurol Disord Drug Targets. 2018. https://doi.org/10.1177/0963689718773361.

Article  PubMed  PubMed Central  Google Scholar 

Van Kralingen JC, McFall A, Ord EJ, Coyle TF, Bissett M, McClure JD, McCabe C, Macrae M, Dawson J, Work LM. Altered extracellular vesicle microRNA expression in ischemic stroke and small vessel disease. Mol Neurobiol. 2019. https://doi.org/10.1007/s12975-018-0682-3.

Article  Google Scholar 

Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013;13:178. https://doi.org/10.1186/1471-2377-13-178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Ki Y, Zhang Y, Zhang B-H, Zhao H, Zhao X, Shi F-D, Jin W-N, Zhang X-A. miR-1224 contributes to ischemic stroke-mediated natural killer cell dysfunction by targeting Sp1 signaling. J Neuroinflamm. 2021. https://doi.org/10.1186/s12974-021-02181-4.

Article  Google Scholar 

Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D. The relation of brain-derived neurotrophic factor with microRNAs in neurodegenerative diseases and ischemic stroke. Mol Neurobiol. 2019. https://doi.org/10.1007/s12035-020-02101-2.

Article  Google Scholar 

Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: from pre- to post-disease. Prog Neurobiol. 2017. https://doi.org/10.1016/j.pneurobio.2017.08.002.

Article  PubMed  PubMed Central  Google Scholar 

Eyileten C, Wicik Z, De Rosa S, Mirowska-Guzel D, Soplinska A, Indolfi C, Jastrebska-Kurkowska I, Czlonkowska A, Postula M. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke—a comprehensive review and bioinformatic analysis. Cells. 2018. https://doi.org/10.3390/cells7120249.

Article  PubMed  PubMed Central  Google Scholar 

Wang SW, Liu Z, Shi ZS. Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant. 2018;27(12):1763–77. https://doi.org/10.1177/0963689718806818.

Article  PubMed  PubMed Central  Google Scholar 

Rahmati M, Ferns GA, Mobarra N. The lower expression of circulating miR-210 and elevated serum levels of HIF-1α in ischemic stroke; possible markers for diagnosis and disease prediction. J Clin Lab Anal. 2021;35(12): e24073. https://doi.org/10.1002/jcla.24073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Wu J, Wu J, Fan Q, Zhou J, Wu J, Liu S, Zang L, Ye J, Xiao M, Tian T, Gao J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. Nanoscale. 2019. https://doi.org/10.1186/s12951-019-0461-7.

Article  PubMed  PubMed Central  Google Scholar 

Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.116.005052.

Article  PubMed  PubMed Central  Google Scholar 

Liang C, Zhang T, Shi XL, Jia L, Wang YL, Yan CH. Modified Renshen Yangrong Decoction enhances angiogenesis in ischemic stroke through promotion of microRNA-210 expression by regulating the HIF/VEGF/NOTCH signaling pathway. Brain Behav. 2021;11(8): e2295.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang LQ, Wang CL, Xu LN, Hua DF. The expression research of miR-210 in the elderly patients with COPD combined with ischemic stroke. Eur Rev Med Pharmacol Sci. 2016;20(22):4756–60.

PubMed  Google Scholar 

Ivan M, Huang X. miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol. 2014;772:205–27. https://doi.org/10.1007/978-1-4614-5915-6_12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

Article  CAS  PubMed  Google Scholar 

Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862–4.

Article  CAS  PubMed  Google Scholar 

Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

Article  CAS  PubMed  Google Scholar 

Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.

Article  CAS  PubMed  Google Scholar 

Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.

Article  CAS  PubMed  Google Scholar 

Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

Article  CAS  PubMed  Google Scholar 

Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8(17):2756–68. https://doi.org/10.4161/cc.8.17.9387.

Article  CAS  PubMed  Google Scholar 

Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.

Article  CAS  PubMed  Google Scholar 

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72

留言 (0)

沒有登入
gif