The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management

Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, Duerschmied D, Smyth SS, Parker WAE, Ajjan RA et al (2022) Current and novel biomarkers of thrombotic risk in COVID-19: a consensus statement from the international COVID-19 thrombosis biomarkers colloquium. Nat Rev Cardiol 19:475–495. https://doi.org/10.1038/s41569-021-00665-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker RC (2020) COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis 50:54–67. https://doi.org/10.1007/s11239-020-02134-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C (2020) Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2:e437–e445

Article  PubMed  PubMed Central  Google Scholar 

Connors JM, Levy JH (2020) COVID-19 and its implications for thrombosis and anticoagulation. Blood 135:2033–2040

Article  CAS  PubMed  Google Scholar 

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383:120–128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 26:681–687

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker RC (2020) Toward understanding the 2019 coronavirus and its impact on the heart. J Thrombosis Thrombolysis. https://doi.org/10.1007/s11239-020-02107-6

Article  Google Scholar 

Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637. https://doi.org/10.1002/path.1570

Article  CAS  PubMed  PubMed Central  Google Scholar 

To K, Lo AW (2004) Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol 203:740–743. https://doi.org/10.1002/path.1597

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rood JE, Maartens A, Hupalowska A, Teichmann SA, Regev A (2022) Impact of the human cell atlas on medicine. Nat Med 28:2486–2496

Article  CAS  PubMed  Google Scholar 

Partridge LJ, Urwin L, Nicklin MJH, James DC, Green LR, Monk PN (2021) ACE2-Independent interaction of SARS-CoV-2 spike protein with human epithelial cells is inhibited by unfractionated heparin. Cells 10:1419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu H, Chan JF-W, Yuen K-Y (2022) Animal models in SARS-CoV-2 research. Nat Methods 19:392–394

Article  CAS  PubMed  Google Scholar 

Zheng X-S, Wang Q, Min J, Shen X-R, Li Q, Zhao Q-C, Wang X, Jiang R-D, Geng R, Chen Y (2022) Single-cell landscape of lungs reveals key role of neutrophil-mediated immunopathology during lethal SARS-CoV-2 infection. J Virol 96:e00038-e122

Article  PubMed  PubMed Central  Google Scholar 

Aid M, Vidal SJ, Piedra-Mora C, Ducat S, Chan CN, Bondoc S, Colarusso A, Starke CE, Nekorchuk M, Busman-Sahay K et al (2022) Ad26.COV2.S prevents upregulation of SARS-CoV-2 induced pathways of inflammation and thrombosis in hamsters and rhesus macaques. PLoS Pathog 18:e1009990. https://doi.org/10.1371/journal.ppat.1009990

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciurkiewicz M, Armando F, Schreiner T, de Buhr N, Pilchová V, Krupp-Buzimikic V, Gabriel G, von Köckritz-Blickwede M, Baumgärtner W, Schulz C, Gerhauser I (2022) Ferrets are valuable models for SARS-CoV-2 research. Vet Pathol 59:661–672. https://doi.org/10.1177/03009858211071012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao CC, Li M, Deng W, Ma CH, Chen YS, Sun YQ, Du T, Liu QL, Li WJ, Zhang B et al (2022) Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell. https://doi.org/10.1007/s13238-022-00915-5

Article  PubMed  PubMed Central  Google Scholar 

Rutkai I, Mayer MG, Hellmers LM, Ning B, Huang Z, Monjure CJ, Coyne C, Silvestri R, Golden N, Hensley K et al (2022) Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat Commun 13:1745. https://doi.org/10.1038/s41467-022-29440-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chernysh IN, Nagaswami C, Kosolapova S, Peshkova AD, Cuker A, Cines DB, Cambor CL, Litvinov RI, Weisel JW (2020) The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep 10:5112. https://doi.org/10.1038/s41598-020-59526-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Genchi A, Semerano A, Schwarz G, Dell’Acqua B, Gullotta GS, Sampaolo M, Boeri E, Quattrini A, Sanvito F, Diamanti S et al (2022) Neutrophils predominate the immune signature of cerebral thrombi in COVID-19 stroke patients. Acta Neuropathol Commun 10:14. https://doi.org/10.1186/s40478-022-01313-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desilles JP, Solo Nomenjanahary M, Consoli A, Ollivier V, Faille D, Bourrienne MC, Hamdani M, Dupont S, Di Meglio L, Escalard S et al (2022) Impact of COVID-19 on thrombus composition and response to thrombolysis: insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke. J Thromb Haemost 20:919–928. https://doi.org/10.1111/jth.15646

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khismatullin RR, Ponomareva AA, Nagaswami C, Ivaeva RA, Montone KT, Weisel JW, Litvinov RI (2021) Pathology of lung-specific thrombosis and inflammation in COVID-19. J Thromb Haemost : JTH 19:3062–3072. https://doi.org/10.1111/jth.15532

Article  CAS  PubMed  Google Scholar 

Wadowski PP, Panzer B, Józkowicz A, Kopp CW, Gremmel T, Panzer S, Koppensteiner R (2023) Microvascular thrombosis as a critical factor in severe COVID-19. Int J Mol Sci 24:2492

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582

Article  CAS  PubMed  Google Scholar 

Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Dassler-Plenker J, Guerci P, Huynh C, Knight JS et al (2020) Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. https://doi.org/10.1084/jem.20200652

Article  PubMed  PubMed Central  Google Scholar 

Wu J, Liu J, Li S, Peng Z, Xiao Z, Wang X, Yan R, Luo J (2020) Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Med Infect Dis 37:101673. https://doi.org/10.1016/j.tmaid.2020.101673

Article  PubMed  PubMed Central  Google Scholar 

Wagner DD, Heger LA (2022) Thromboinflammation: from atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol 42:1103–1112

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif